• 제목/요약/키워드: Sample Quantile Function

검색결과 15건 처리시간 0.021초

Regression Quantile Estimations on Censored Survival Data

  • 심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.31-38
    • /
    • 2002
  • In the case of multiple survival times which might be censored at each covariate vector, we study the regression quantile estimations in this paper. The estimations are based on the empirical distribution functions of the censored times and the sample quantiles of the observed survival times at each covariate vector and the weighted least square method is applied for the estimation of the regression quantile. The estimators are shown to be asymptotically normally distributed under some regularity conditions.

  • PDF

Iterative Support Vector Quantile Regression for Censored Data

  • Shim, Joo-Yong;Hong, Dug-Hun;Kim, Dal-Ho;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.195-203
    • /
    • 2007
  • In this paper we propose support vector quantile regression (SVQR) for randomly right censored data. The proposed procedure basically utilizes iterative method based on the empirical distribution functions of the censored times and the sample quantiles of the observed variables, and applies support vector regression for the estimation of the quantile function. Experimental results we then presented to indicate the performance of the proposed procedure.

Improving Sample Entropy Based on Nonparametric Quantile Estimation

  • Park, Sang-Un;Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제18권4호
    • /
    • pp.457-465
    • /
    • 2011
  • Sample entropy (Vasicek, 1976) has poor performance, and several nonparametric entropy estimators have been proposed as alternatives. In this paper, we consider a piecewise uniform density function based on quantiles, which enables us to evaluate entropy in each interval, and study the poor performance of the sample entropy in terms of the poor estimation of lower and upper quantiles. Then we propose some improved entropy estimators by simply modifying the quantile estimators, and compare their performances with some existing estimators.

국내 가구의 전력소비 수준에 따른 특성 및 결정요인 (Characteristics and Determinants of Household Electricity Consumption for Different Levels of Electricity Use in Korea)

  • 김용래;김민정
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1025-1031
    • /
    • 2017
  • This study compares the characteristics and the determinants of household electricity consumption for low electricity consuming and high electricity consuming households. The data are drawn from a household energy consumption sample survey by Korea Energy Economics Institute in 2015. The results show the differences in socio-demographic, dwelling, and electricity consumption characteristics between two households. Next, the factors affecting the household's electricity consumption are investigated. Common factor affecting the electricity consumption function is only the number of electrical appliances. There are also the differences in major determinants of the household's electricity consumption functions for two households. The results of this study would be useful for understanding socio-demographic, dwelling, and electricity consumption characteristics of low electricity consuming and high electricity consuming households.

Model-Free Interval Prediction in a Class of Time Series with Varying Coefficients

  • Park, Sang-Woo;Cho, Sin-Sup;Lee, Sang-Yeol;Hwang, Sun-Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.173-179
    • /
    • 2000
  • Interval prediction based on the empirical distribution function for the class of time series with time varying coefficients is discussed. To this end, strong mixing property of the model is shown and results due to Fotopoulos et. al.(1994) are employed. A simulation study is presented to assess the accuracy of the proposed interval predictor.

  • PDF

Association of heavy metal complex exposure and neurobehavioral function of children

  • Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
    • Annals of Occupational and Environmental Medicine
    • /
    • 제35권
    • /
    • pp.23.1-23.14
    • /
    • 2023
  • Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.

ON ALMOST SURE REPRESENTATIONS FOR LONG MEMORY SEQUENCES

  • Ho, Hwai-Chung
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.741-753
    • /
    • 1998
  • Let G(*) be a Borel function applied to a stationary long memory sequence {X$_{i}$} of standard Gaussian random variables. Focusing on the process {G(X$_{i}$)}, the present paper establishes the almost sure representation for the empirical quantile process, that is, Bahadur's representation, and for the empirical process with respect to sample mean. Statistical applications of the representations are also addressed.sed.

  • PDF

Estimation of Treatment Effect for Bivariate Censored Survival Data

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.1017-1024
    • /
    • 2003
  • An estimation problem of treatment effect for bivariate censored survival data is considered under location shift model between two sample. The proposed estimator is very intuitive and can be obtained in a closed form. Asymptotic results of the proposed estimator are discussed and simulation studies are performed to show the strength of the proposed estimator.

모의실험(模擬實驗)에서 반복회수(反復回數)의 연구 (On The Number of Replications in Simulation Study)

  • 송재기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제1권
    • /
    • pp.47-57
    • /
    • 1990
  • A method which determines the number of replications in the simulation is proposed, particularly for small-sample comparison of estimators. This method takes the smallest number of replications that makes the difference of mean square errors be statistically significant and provides an efficient algorithm for calculating the standard error of the mean square error. Two examples are illustrated, the first one is on comparison of mean and median ; the second, the Kaplan-Meier type and Buckley-James type estimators of a quantile function with censored data.

  • PDF

A comparative study in Bayesian semiparametric approach to small area estimation

  • Heo, Simyoung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1433-1441
    • /
    • 2016
  • Small area model provides reliable and accurate estimations when the sample size is not sufficient. Our dataset has an inherent nonlinear pattern which signicantly affects our inference. In this case, we could consider semiparametric models such as truncated polynomial basis function and radial basis function. In this paper, we study four Bayesian semiparametric models for small areas to handle this point. Four small area models are based on two kinds of basis function and different knots positions. To evaluate the different estimates, four comparison measurements have been employed as criteria. In these comparison measurements, the truncated polynomial basis function with equal quantile knots has shown the best result. In Bayesian calculation, we use Gibbs sampler to solve the numerical problems.