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Iterative Support Vector Quantile Regression for
Censored Data*

Jooyong Shim» Dug Hun Hong? Dal Ho Kim® and Changha Hwang?

Abstract

In this paper we propose support vector quantile regression (SVQR) for
randomly right censored data. The proposed procedure basically utilizes
iterative method based on the empirical distribution functions of the cen-
sored times and the sample quantiles of the observed variables, and applies
support vector regression for the estimation of the quantile function. Ex-
perimental results are then presented to indicate the performance of the
proposed procedure.

Keywords: Censoring; empirical distribution function; quantile regression; support vector
regression.

1. Introduction

The median is a simple and meaningful measure of the center of the thick
tailed distribution of the survival times, and can be well estimated even for not
too heavy censoring. But usually large or small quantile depends on the input
differently from the median, which leads to consider the quantile regression ap-
proach. Koenker and Bassett (1978) introduced the quantile regression model.
Quantile regression is gradually evolving into an ensemble of practical statistical
methods for estimating and conducting inference about models for conditional
quantile functions. In the linear quantile regressin model the quantile function
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of the response y; for a given x; is assumed to be linearly related to the input
vector x; as follows

q(8|z;) = =tB(9) for 6 € (0,1), (1.1)

where B(0) is the 6" regression quantile and its estimator is defined as any
solution to minimize the objective function,

> poly: — 21B(6)) for 0.€ (0,1), (12)

=1

where pg(-) is the check function defined as
po(r) = 8rI(r > 0) + (0 — 1)rI(r < 0), (1.3)

where I(-) is the indicator function. The median regression estimator is easily
seen to be a special case of § = 1/2.

Powell (1986) studied the censored quantile regression, where observations
could not be observed below the fixed level 0 in the regression model. The
censored regression quantile estimator is defined as the value of 8 minimizing the

objective function,
n

S polys — max{0, #3(6)}]. (L4)

i=1

Lindgren (1997) suggested a way to estimate a parametric quantile function
with local Kaplan-Meier (1958) estimates of the survival functions for more gen-
eral censored case, which is to estimate the #** quantile function of response
variables by transforming the estimation of the %" quantile function of response
variables into the estimation of the corresponding p** quantile function of the
observed variables in iterative method when response variables are censored.

In this paper we propose new nonlinear quantile regression method for cen-
sored data using support vector quantile regression (SVQR) of Hwang and Shim
(2005), which is called SVQRC. We also derive SVQRC using iterative reweighted
least squares (IRWLS) procedure based on modified check function and obtain
generalized approximate cross validation (GACV) function in a simple form for
selecting hyper-parameters related.

2. Iterative SVQRC Using QP

In this section we present iterative SVQR for censored data using quadratic
programming (QP). This is called SVQRC. First, we are going to illustrate SVQR
in Hwang and Shim (2005).



Iterative Support Vector Censored Quantile Regression 197

Let T; be the response variable corresponding to input vector x; or transfor-
mation on it, where ¢ = 1,2,...,n. Here x; is (p+ 1)-dimensional vector of which
the first component is set to 1. Let g(8)x;) be the §** quantile function of T;
given x; for @ in (0,1) then

q(0|z;) = inf {t:P(T; < t|z;) > 60}. (2.1)
Assume that ¢(6|x;) is nonlinearly related to input vector x; as
q(f|z;) = w(f)'®(x;) fori=1,2,...,n, (2.2)

where ®(x;) is a nonlinear feature mapping function which is used to allow for
the case of nonlinear quantile regression. The input vectors are nonlinearly trans-
formed into a potentially higher dimensional feature space by a nonlinear map-
ping function ® and then a linear quantile regression is performed there. For
this nonlinear quantile regression, the solution requires the computations of dot
products ®(x)!®(x;), k,! = 1,...,n in a potentially higher dimensional fea-
ture space. Under certain conditions (Mercer, 1909), these demanding compu-
tations can be reduced significantly by introducing a kernel function K such
that ®(x)'®(x;) = K(xk,z;). Several choices of kernel functions are possible.
Gaussian kernel is the most frequently used kernel. The linear quantile regression
can be regarded as special case of nonlinear quantile regression with an identity
feature mapping function @ in nonlinear regression, that is, K(xx, z;) = w'}cml.

Let K be n x n matrix with entries K (zx, x;) and K; be the it" row of K.
Then, in SVQR the quantile function (2.2) can be rewritten as

q(0,z;) = K;(a—a*) fori=1,2,...,n, (2.3)

where a and a* are vectors of the solutions a; and o] for the optimization
problem of SVQR, using QP with (¢;,®;),7=1,2,...,n,

min%(a —a*)'K(a—-a*) - (a—a*)it (2.4)
subject to 0<q; <6C and 0 < af <(1-6)C.

Here C is a regularization parameter.

We are now going to describe SVQRC. In fact, we can not observe T;’s but can
observe Y; = min(T;, C;) and §; = I(T; < C;), where C; is the censoring variable
corresponding to x; for ¢ = 1,2,...,n. C;’s are assumed to be independently
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distributed with unknown distribution function G. Since T; and C; are assumed
to be independent given x;,

P(Y; < g(f|xi)|x;) = 1 — P(T; > q(f]z:)|2:)P(C; > q(0lxi)|x;)  (2.5)
> 1—(1-0){1-G(q(0]z:))}-

The right-hand side of (2.5) depends on 6 and G(g(f|x;)), but does not depend
on the distribution of the response variable. Let us denote it by p;. Then ¢(0|x;)
can be set to satisfy

q(flz;) = inf{y : P(Y; < y|x;) > pi}, (2.6)

that is, g(f]x;) can be the pt* quantile function of Y; given x;. If the censoring
distribution G is known, the #** quantile function, g(6|x;) , can be obtained by
minimizing the objective function iteratively,

3 o (i — q(6l2)), 2.7)
i=1

where p; =1 — (1 — 0){1 — G(q(f]=:))}-
It can be extended to the nonlinear case where ¢(9|z;) = Ki(a — a*),i =
1,...,n, which can be estimated by iterative method as follows:

1. Set (o, @*) to the initial value (a®, a*®) and q(0]x;) = K;(a® — a*(©).
2. Obtain p{") = 1 — (1 — 0){1 — G(q(0}x:))}.
3. Find (o) o*(+1)) which is the solution of (a, a*) for the optimization
problem of SVQR with (y;,x;), i =1,2,...,n,
min%(a - o")!'K(a—-a*) — (a—a*)'t (2.8)
subject to 0<a; <Cp?, 0<ar <c1-pV), i=1,2,...,n.

4. Iterate Steps 2-3 until convergence.

Here, the Kaplan-Meier estimate G of distribution function G of C;’s can be
obtained as,

0, otherwise,

~ n—i \'70W o o
1-G(y) = iy <y (n—i+]) y iy <Yy, (2.9)

where (y(;),0(;)) is (v, d;) ordered on y; for i = 1,...,n.
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3. Iterative SVQRC Using IRWLS

If we consider a differentiable modified check function instead of check func-
tion (1.3), then we can obtain SVQRC using iterative reweighted least squares
(IRWLS) procedure based on modified check function, which is much faster in
computing and can also have easy derivation of GACV function. In this paper
we use the modified check function pj 5(-) which is attained by providing the dif-
ferentiability at 0 by differing from the original check function py(-) in the small
interval (=4, 4)

2 2

pos(r) = pI(r 2 0) + (1 - p)=1(r < 0). (31)

Now the problem (2.8) becomes obtaining 8 to minimize
1 n
L(B) = 50'KB+C Y _ pp,s(vi — Kif). (3.2)
i=1

Taking partial derivatives of (3.2) with regard to 3 leads to the optimal value of
3 to be the solution to

0=KB-CKWy+CKWKPp. (3.3)

Here W is a diagonal matrix with the i*" diagonal element w;; obtained from the
derivative of the modified check function as

( %’—i if 0<r <y,
%j if >,
Wi = { 21 — s i 5 < re < 0, (3.4)
L —(pZT: 1) if T < —(5,

where r; = y; — K;3. The solution to (2.8) can be obtained with W which is
composed of the values of pl(l) and ,B(l) which were obtained in previous steps.
Thus, g(f|lz;) = K3, ¢ = 1,...,n can be estimated by iterative method as
follows:

1. Set B to the initial value 8©) and q(4|x;) = K;3©.

2. Obtain pgl) =1—(1—0)(1 - G(g(6|z:))) and obtain W from (2.6) using 4,
p) and r{? = y; — K80,

i
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3. Obtain B4 from ) = (KWK + K/C)"'KWy.

4. ITterate Steps 2-3 until convergence.

The functional structure of SVQRC is characterized by regularization param-
eter C and kernel parameter. The cross validation (CV) technique used in SVR
cannot be used in SVQR, since the loss function used in SVQR is not a function
of residuals as SVR. To select the hyper-parameters of SVQRC we consider the
cross validation (CV) function as follows:

Z po,6(yi — 90)(0:)), (3.5)

where A is the set of hyper-parameters and g(;(6|;) indicates the quntile function
estimated without the it* observation. Since for each candidates of parameters
qg)(flz;) for i = 1,...,n should be evaluated, selecting parameters using CV
function is computationally formidable. Thus we apply GACV function (Yuan,
2006) to select the set of hyper-parameters A for SVQRC as follows,

Zpo s(yi — a(Blx:))

n — trace(H) '

GACV()) = (3.6)
where H is the hat matrix such that g¢(f|z) = Hy with the (4,5)* element
hij = 8q(0|x;)/0y;. GACV function cannot be applied to SVQRC using QP since
H is not computable. But for SVQRC using IRWLS, C and kernel parameter
can be selected by applying (3.6), where H is obtained easily as

H=KKWK+K/C)"'KW. (3.7)

4. Numerical Studies

We illustrate the performance of the censored regression method using SVQRC
with modified check function through the simulated example on the nonlinear re-
gression cases and real data in Heuchenne and Keilegom (2005). For the nonlinear
censored regression case, 100 of z’s are equally spaced ranging from 0 to 1, and
(t,¢)’s are generated as follows.

t; = sin(27x;) + 0.5 + €, ¢; =sin(27z;) + 0.5+ ¢, i =1,...,100,
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where €;,’s and e;’s are generated from normal distributions, N(0,0.1) and
N(cc,0.1), respectively. cc is chosen for 20% censoring proportion. Then the
6" quatile function of given can be modelled as

q(|z) = 0.5 + sin(27z) + V0.18(9) L.

We set § = 0.001 in the modified check function. By the estimation procedure in
Section 3, we have the estimated quantile functions given z. The Gaussian kernel
is utilized in this example, which is

K(xy,z2) = exp(—%(scl —z2)%).
For each data set, the regularization parameter C and the kernel parameter o2
are obtained from GACV function (3.6).
Figure 4.1 shows the true and estimated quantile functions corresponding to
6 = 0.25,0.5 and 0.75 for one of 50 data sets. The true and estimated quantile
functions are represented by solid and dashed curves, respectively. Uncensored

{3 32

and censored data points are denoted by and “0”, respectively. From Figure

4.1 we can recognize that the estimated quantile functions behave similarly well

Figure 4.1: The true and the estimated quantile functions corresponding to 6 =
0.25,0.5,0.75 for 20% censored data
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Figure 4.2: The estimated median function for fatigue data by SVQRC

as the true estimated quantile functions do. The mean squared error (MSE) is
used for the performance metric,

1 n

MSE = — D (4(Blz:) ~ q(b]x:))?,
i=1
where z; is the input variable, ¢ = 1,...,n. From 50 data sets we obtained the

average of MSEs as 0.0141, 0.0162, 0.0263, respectively, which indicates that the
proposed procedure provides satisfying results.

The median function, that is, 0.5 quantile function, is estimated from the
low-cycle fatigue data (Heuchenne and Keilegom, 2005) for a strain-controlled
test on 26 cylindrical specimens of nickel-base superalloy, which include 4 cen-
sored data. The polynomial kernel with degree 2 is utilized in this example.
The regularization parameter is obtained as 5 from GACV function (3.6). Fig-
ure 4.2 shows that the logarithms of thousands of cycles before fatigue against
pseudostress. The estimated median function for pseudostress by the proposed
procedure shows similar values as the estimated mean functions by Heuchenne
and Keilegom (2005).
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5. Concluding Remarks

In this paper, we dealt with estimating the quantile functions of the censored
regression model using SVQRC and obtained GACV function for the proposed
procedure. By using GACV function the model selection becomes easier and
faster than that by a leave-one-out cross validation. Through two examples we
showed that the proposed procedure provides the satisfying results and is attrac-
tive approach to modelling of the quantile regression with censored data. We
found that the model is not much sensitive to the choice of the regularization
parameter C, but it is sensitive to the choice of the kernel parameter o2. Thus a
consideration such as standardization of input vectors is required for the choice
of the kernel parameter for nonlinear cases.
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