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Abstract

Small area model provides reliable and accurate estimations when the sample size
is not sufficient. Our dataset has an inherent nonlinear pattern which significantly
affects our inference. In this case, we could consider semiparametric models such as
truncated polynomial basis function and radial basis function. In this paper, we study
four Bayesian semiparametric models for small areas to handle this point. Four small
area models are based on two kinds of basis function and different knots positions. To
evaluate the different estimates, four comparison measurements have been employed as
criteria. In these comparison measurements, the truncated polynomial basis function
with equal quantile knots has shown the best result. In Bayesian calculation, we use
Gibbs sampler to solve the numerical problems.

Keywords: Basis function, Gibbs sampler, knots, small area model.

1. Introduction

Sometimes, there is a case where the sample size in specific domain is too small to provide
good estimations. In this case, we usually consider the models including small area ran-
dom effects which are called small area models. These small area estimations deal with the
problem of providing reliable estimates when the information available on those variables is
not sufficient to provide accurate direct estimate. In this sense, the demand for small area
estimation has greatly increased. A study on the small area estimation is related to Ghosh
and Rao (1994), Ghosh, Nangia and Kim (1996) and Lee and Kim (2015). These estimates
play an important role in formulating policies and programs, in the allocation of government
funds and in regional planning.

Area-level models based on area direct survey estimators are popular in model based
small area inference. The Fay-Herriot (1979) model is a popular area-level model. The Fay-
Herriot model produces reliable small area estimates by combining the design model and
the regression model and then borrowing strength from other domains. It is assumed that
the direct survey estimators are linear function of the covariates. When this assumption fails
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down, the Fay-Herriot model can lead to biased estimators of the small area parameters.
A semiparametric specification of the Fay-Herriot model, which allows nonlinearities in the
relationship between Y and the auxiliary variables X, can be obtained by penalized-splines
(or P-spline) (Eilers and Marx, 1996). Current work in small area model by using penalized
splines of nonlinear pattern has been studied in Bhadra, Ghosh and Kim (2012) and Hwang
and Kim (2015). P-spline, expressed using truncated polynomial basis functions with varying
degrees and number of knots, is a commonly used but powerful function estimation tool in
nonparametric approaches.

In this paper, the estimation of median income for four-person families was our interest.
We set a semiparametric modeling procedure for estimating the median household income
for all the U.S states. Figure 1.1 shows the plot of the Current Population Survey (CPS)
median income against the Internal Revenue Service (IRS) mean income for all the states for
the years 1995 through 1999. It is apparent that CPS median income may have an underlying
nonlinear pattern with respect to IRS mean income, especially for large values of the latter.

Figure 1.1 IRS mean income vs CPS median income

The organization of our paper is as follows. In Section 2, we introduce the two types of
Bayesian semiparametric models. In Section 3, we provide the result of the numerical study.
It includes a real example and numerical analysis using two types of method of positioning
knots. Then we give our concluding remarks in Section 4.

2. Bayesian semiparametric models

2.1. Semiparametric income trajectory models

Let Yij and Xij denote the CPS median household income and the IRS mean income
recorded for the ith state and jth year. The basic semiparametric model can be expressed as

Yij = f(xij) + bi + uij + eij ,

where f(xij) is an unspecified function of xij reflecting the unknown response-covariate rela-
tionship. bi is a state-specific random effect while uij shows an interaction effect between the
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ith state and the jth year. Further, it is assumed that uij and eij are mutually independent
with uij ∼ N(0, ψ2

j ) and eij ∼ N(0, σ2
ij).

We approximate f(xij) using the truncated polynomial basis function (TPBF),

Yij = β0 + β1xij + · · ·+ βpx
p
ij +

K∑
k=1

γk(xij − τk)p+ + bi + uij + eij

= X ′ijβ + Z ′ijγ + bi + uij + eij

= θij + eij ,

where θij = X ′ijβ + Z ′ijγ + bi + uij is our target of interest. Here Xij = (1, xij , · · · , xpij)′,
Zij = {(xij−τ1)p+, · · · , (xij−τK)p+}′, β = (β0, · · · , βp)′ is the vector of regression coefficients
while γ = (γ1, · · · , γK)′ is the vector of spline coefficients. We assume bi ∼iid N(0, σ2

b ) and
γ ∼ N(0, σ2

γIK). Commonly, linear or quadratic splines provides most practical purposes
since they ensure adequate smoothness in the fitted curve.

When a real-valued function depending only on the distance from the origin, we call this
a radial basis function (RBF), φ(x) = φ(‖x‖). Alternatively, the function depending on the
distance from some other point c, called a center, is expressed as φ(x, c) = φ(‖x− c‖). The
radial function, Z ′ijγ, is used to approximate f(xij) in the model,

Yij = β0 + β1xij + · · ·+ βpx
p
ij +

K∑
k=1

γk|xij − τk|+ bi + uij + eij

= X ′ijβ + Z ′ijγ + bi + uij + eij

= θij + eij .

Here Xij = (1, xij , · · · , xpij)′, Zij = {|xij − τ1|, · · · , |xij − τK |}′, β = (β0, · · · , βp)′ is the
vector of regression coefficients while γ = (γ1, · · · , γK)′ is the vector of spline coefficients.
We assume bi ∼iid N(0, σ2

b ) and γ ∼ N(0, σ2
γIK).

Here m and t respectively denote the number of small areas and time points at which
the response and covariates are taken. In this paper, m = 51 for the 50 U.S states and the
District of Columbia and t = 5 for the years 1995-1999.

2.2. Hierarchical Bayesian inference

Let Y i = (Yi1, · · · , Yit)′ be the response andXi = (Xi1, · · · ,Xit)
′ andZi = (Zi1, · · · ,Zit)′

be the covariates for the ith state. Let Ωi = (θi,β,γ, bi,ψ, σ
2
b , σ

2
γ) be the parameter space.

The full parameter space is Ω = Ω1 × · · · ×Ωm. Thus, the likelihood function is as below.

L(Y i,Xi,Zi|Ωi) ∝ L(Y i|β,γ, bi,ψ2,Xi,Zi)L(bi|σ2
b )L(γ|σ2

γ)

∝
t∏

j=1

L(Yij |θij , σ2
ij)L(θij |X ′ijβ +Z ′ijγ + bi, ψ

2
j )L(bi|σ2

b )L(γ|σ2
γ).

Here, L(U |a, b) denotes a normal distribution with mean a and variance b while L(V |a)
denotes a normal density with mean 0 and variance a.
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We assign noninformative improper uniform prior for the polynomial coefficients and
proper conjugate gamma prior on the inverse of the variance components. The prior dis-
tributions are assumed to be mutually independent. We have the following priors: β ∼
uniform(Rp+1), (ψ2

j )
−1 ∼ Gamma(cj , dj) (j = 1, · · · , t), (σ2

b )−1 ∼ Gamma(c, d) and
(σ2
γ)−1 ∼ Gamma(cγ , dγ). Here X ∼ G(a, b) denotes a gamma distribution with shape

parameter a and rate parameter b having the expression f(x) ∝ xa−1exp(−bx), x = 0.
The full posterior of the parameters given the data is as follows.

p(Ω|Y ,X,Z) ∝
m∏
i=1

L(Y i,Xi,Zi|Ωi)π(β)π(σ2
b )π(σ2

γ)

t∏
j=1

π(ψ2
j ),

which is the product of the likelihood functions and prior distributions.
The conditional density of θij is given by

π(θij |β,γ,ψ2, b,X,Z) ∝ exp

−
(
θij −

yijψ
2
j+(X′

ijβ+Z′
ijγ+bi)σ

2
ij

ψ2
j+σ

2
ij

)2

2
σ2
ijψ

2
j

ψ2
j+σ

2
ij

 .

Therefore the conditional density of θij is as follows.

[θij |β,γ,ψ2, b,X,Z]

∼ N
[(

1

σ2
ij

+
1

ψ2
j

)−1(
yij
σ2
ij

+
(X ′ijβ +Z ′ijγ + bi)

ψ2
j

)
,

(
1

σ2
ij

+
1

ψ2
j

)−1]
.

The conditional density of bi is given by

π(bi|β,γ,θ,ψ2, σ2
b ,X,Z) ∝ exp

−
1

2

b2i − 2

(∑
j

θij−X′
ijβ−Z

′
ijγ

ψ2
j

)
/

(∑
j

1
ψ2

j
+ 1

σ2
b

)
bi(∑

j
1
ψ2

j
+ 1

σ2
b

)−1
 .

So the conditional density of bi is as follows.

[bi|β,γ,θ,ψ2, σ2
b ,X,Z]

∼ N
[(

1

σ2
b

+

t∑
j=1

1

ψ2
j

)−1( t∑
j=1

1

ψ2
j

(θij −X ′ijβ −Z
′
ijγ)

)
,

(
1

σ2
b

+

t∑
j=1

1

ψ2
j

)−1]
.

The conditional density of β is given by

π(β|γ,θ,ψ2,X,Z)

∝ exp
[
−1

2

(
β′
(∑

i

∑
j

XijX
′
ij

ψ2
j

)
β − 2

∑
i

∑
j

β′
Xij(θij − Z ′ijγ − bi)

ψ2
j

)]
.

Thus the conditional density of β is as follows.

[β|γ,θ, b,ψ2,X,Z]

∼ N
[( m∑

i=1

t∑
j=1

XijX
′
ij

ψ2
j

)−1( m∑
i=1

t∑
j=1

Xij

ψ2
j

(θij −Z ′ijγ − bi)
)
,

( m∑
i=1

t∑
j=1

XijX
′
ij

ψ2
j

)−1]
.
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The conditional density of γ is given by

π(γ|β,θ, b,ψ2, σ2
γ ,X,Z)

∝ exp

−
{
γ′
(∑

ij

ZijZ
′
ij

ψ2
j

+ 1
σ2
γ
I

)
γ − 2γ′

∑
ij

Zij(θij−X′
ijβ−bi)

ψ2
j

}
2

 .
Therefore the conditional density of γ is as below.

[γ|β,θ, b,ψ2, σ2
γ ,X,Z]

∼ N
[(∑

i,j

ZijZ
′
ij

ψ2
j

+
1

σ2
γ

I

)−1(∑
i,j

Zij
ψ2
j

(θij −X ′ijβ − bi)
)
,

(∑
i,j

ZijZ
′
ij

ψ2
j

+
1

σ2
γ

I

)−1]
.

The conditional density of (σ2
γ)−1 is given by

π((σ2
γ)−1|γ) ∝

(
1

σ2
γ

)K
2 +cr−1

exp

(
−

1
2γ
′γ + dr

σ2
γ

)
.

So the conditional density of (σ2
γ)−1 is as below.

[(σ2
γ)−1|γ] ∼ Gamma

[
K

2
+ cγ ,

1

2
γ′γ + dγ

]
.

The conditional density of (ψ2
j )−1 is given by

π((ψ2
j )−1|β,γ,θ, b,X,Z)

∝
(

1

ψ2
j

)m
2 +cj−1

exp

(
−

1
2

∑
i(θij −X ′ijβ − Z ′ijγ − bi)2 + dj

ψ2
j

)
.

Thus the conditional density of (ψ2
j )−1 is as below.

[(ψ2
j )−1|β,γ,θ, b,X,Z] ∼ Gamma

[
cj +

m

2
,

1

2

m∑
i=1

(θij −X ′ijβ −Z
′
ijγ − bi)2 + dj

]
.

Finally, the conditional density of (σ2
b )−1 is given by

π((σ2
b )−1|b) ∝

(
1

σ2
b

)m
2 +c−1

exp

(
−

1
2

∑
i b

2
i + d

σ2
b

)
.

So the conditional density of (σ2
b )−1 is as below.

[(σ2
b )−1|b] ∼ Gamma

[
m

2
+ c,

1

2

m∑
i=1

b2i + d

]
.

Each conditional densities has standard distribution. So we can infer the parameters by
using Gibbs sampler to sample from the full conditional relevant parameters.
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3. Numerical studies

We applied the semiparametric models to analyze the median household income dataset.
For this study, we have used IRS mean income as covariate. This is because it seems to
possess an underlying nonlinear relationship with the CPS median income in Figure 1.1.
Our dataset includes the median household income of all the U.S states and the District
of Columbia for the year from 1995 to 1999. Our targets of inference are the state specific
median household incomes for 1999. Estimates are compared to the corresponding census
figures for 1999 since in small area estimation problems, the census estimates are often
treated as gold standard against which all other estimates are compared.

To check the performance of our estimates, we use the following four criteria to compare
the different estimates.

• Average Relative Bias (ARB) = (51)−1
∑51
i=1

|ci−ei|
ci

• Average Squared Relative Bias (ASRB) = (51)−1
∑51
i=1

|ci−ei|2
c2i

• Average Absolute Bias (AAB) = (51)−1
∑51
i=1 |ci − ei|

• Average Squared Deviation (ASD) = (51)−1
∑51
i=1(ci − ei)2

Here ci and ei respectively denote the census and model based estimates for the ith state
(i = 1, ...51). The lower values of these measures would imply a better model based estimate.

We would like to compare the four different models such as TPBF with equal quantile
knots (model 1), TPBF with equal distance knots (model 2), RBF with equal quantile knots
(model 3) and RBF with equal distance (model 4). Equal quantile knots mean that the knots
(τ1, · · · , τK) are placed on a grid of equally spaced sample quantiles of x′ijs. On the other
hands, equal distance knots mean that the knots (τ1, · · · , τK) are placed on a grid which
has equal distance of range of x′ijs. Figure 3.1 shows the exact location of knots. Figure 3.1
(a) depicts the equal quantile knots and Figure 3.1 (b) depicts the equal distance knots.
The general models are identical to those in Section 2.1. Considering the pattern the data
possess in Figure 3.1, we only choose linear coefficient (p=1) in mean structure.

Figure 3.1 Knots location
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CPS provides direct estimates which are drawn using only data for specific state and time
period. We are interested in comparing our four models to the simple model without knots
and CPS direct estimates. We monitor for the 10,000 iterations in each methods and discard
5,000 burn-in samples. In Table 3.1, the results of each models are shown. The value of ARB
of the without knots model is 0.0362, model 1 is 0.0323 and the ASD value of model 4 is
3,614,617. The comparative measures for the model 1 is the lowest among these models.

Table 3.1 Comparative measures

model ARB ASRB AAB ASD
w/o knots 0.0362 0.0019 1509.84 3,629,741
model 1 0.0323 0.0016 1395.15 3,365,540
model 2 0.0326 0.0016 1409.34 3,522,738
model 3 0.0325 0.0016 1402.60 3,427,372
model 4 0.0330 0.0017 1429.58 3,614,617

CPS 0.0415 0.0027 1753.33 5,300,023

Table 3.2 describes the percentage improvement of the model 1 over the CPS and without
knots model. It is obvious that the model 1 is better than the CPS estimation. Table 3.3
depicts the posterior mean, median and 95% CI for the model 1. The each 95% credible
intervals for parameters γ1, γ2, γ3, γ4, γ5 doesn’t contain 0 indicating the significance of the
knots.

Table 3.2 Percentage improvements with regard to model 1

method ARB ASRB AAB ASD
CPS 22.14% 38.89% 20.43% 36.50%

w/o knots 10.82% 17.09% 7.60% 7.28%

Table 3.3 Parameter estimates for model 1

Parameter Mean Median 95% CI
β0 4908.50837 4908.50836 (4908.50730, 4908.50947)
β1 0.8102296 0.8102296 (0.8102296, 0.8102297)
γ1 -0.1806231 -0.1806231 (-0.1806233, -0.1806229)
γ2 0.0212493 0.0212493 (0.0212488, 0.0212497)
γ3 0.0868506 0.0868506 (0.0868501, 0.0868511)
γ4 -0.1503352 -0.1503352 (-0.1503356, -0.1503347)
γ5 -0.1816672 -0.1816672 (-0.1816675, -0.1816670)

We need to check the convergence of chains to guarantee adequate results. Figures 3.2-3.5
describe the convergence of each parameters. The trace plot is the plots of the iterations
versus the generated values. If all values are within a zone without strong periodicities and
tendencies, then we can assume convergence. Figure 3.2 and 3.4 are the trace plots for 5,000
iterations after discarding the first 5,000. It is shown that the generated sampled values
are stabilized within a zone. Moreover, the ergodic mean refers to the mean value until
the current iteration. If the ergodic mean is stabilized after some iterations, then this is an
indication of the convergence of the algorithm. Figure 3.3 and 3.5 are ergodic mean plots
for 10,000 iterations. The algorithm has reached convergence since the ergodic means have
been stabilized.
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Figure 3.2 Trace plot of β for model 1

Figure 3.3 Ergodic mean plot of β for model 1

Figure 3.4 Trace plot of γ for model 1

Figure 3.5 Ergodic mean plot of γ for model 1
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Monitoring the Monte Carlo error (MC error) is another way to check convergence of the
algorithm. Small MC errors indicate we have the quantity of interest with precision. We use
the batch mean method to estimate MC error with 50 batches. MC errors of our interest
parameters, θij (2.3, 3.3, 0.7, · · · ), are considerably smaller than one third of the posterior
standard deviation (32.6, 25.8, 24.7, · · · ) respectively.

4. Concluding remarks

The proper estimation of median household income for different small areas is one of the
principal goals of the U.S Census Bureau. In this paper, we have proposed a semiparametric
class of models which exploits the longitudinal trend in the state-specific income observa-
tions. In doing so, we have modeled the CPS median income observations as an income
trajectory using P-splines. In detail, we have shown that estimation of the median house-
hold income for all the U.S states using different basis functions and locations of knots
(truncated polynomial basis function, radial basis function, equal quantile knots and equal
distance knots). Also, analysis has been carried out in a hierarchical Bayesian framework. As
seen in Table 3.1, the model with knots works better than one without knots. The truncated
polynomial basis function is slightly better than radial basis function. Similarly, comparative
measures of models with the equal quantile knots are smaller than those of models with the
equal distance knots.

The models in our study can be extended to those with other locations of knots and types
of bases like B-splines, L-splines, etc. Although we used a parametric normal distributional
assumption for the random state effect, a broader class of distributions like the Dirichlet
process or Polya trees could be considered.
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