• Title/Summary/Keyword: Sales System

Search Result 1,182, Processing Time 0.024 seconds

A Proposal on Fintech Platform Model Based on Digitalized Securities to Activating the Independent Financial Advisory System (독립투자자문업 활성화를 위한 디지털 수익증권 기반 핀테크 플랫폼 모델 제안)

  • Moon, Myung-Deok;Kim, Sun-Woong;Choi, Heung Sik
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.149-164
    • /
    • 2022
  • This paper analyzes the independent financial advisory business that is not yet active in Korea and proposes a plan to activate the independent financial advisory business using fintech technology. A bill was enacted in 2017 for the domestic independent financial advisory business, but it has not been activated much until now for various reasons. Although existing studies have proposed solutions in various ways, there is no clear solution yet. This paper proposes a new method of revitalizing the independent financial advisory business through fintech technology using the trust system that has recently attracted attention. Digital securities fintech technology using blockchain distributed ledger technology presents new possibilities in the real estate and music copyright markets, and related fintech venture companies continue to emerge in Korea. By combining these digital securities fintech technologies and the business process of ETF, a method was derived so that independent financial advisors can have their own financial products. The proposed model is more decentralized than the existing financial product sales structure, and presents the possibility of a protocol economy through a structure close to a private blockchain while complying with the existing financial order. This paper is meaningful in that it presented new solutions to completely different markets from information convergence perspectives on two completely different markets, and we hope that more business solutions will emerge through knowledge management activities that converge various perspectives in the future.

A study on the Korean Company's Overseas Expansion Strategy Through Japan Franchise Business Structure Analysis (일본 프랜차이즈사업 구조 분석을 통한 한국기업의 해외진출 전략에 관한 연구)

  • Cho, Hye-Duk;Lee, Sang-Youn
    • The Korean Journal of Franchise Management
    • /
    • v.4 no.1
    • /
    • pp.73-90
    • /
    • 2013
  • Franchise industry know-how and an excellent management company organically integrated knowledge management resources industry. The franchise industry in the country's economic growth continues to contribute a large bar, has had an impact on the company's growth The franchise industry franchise industry in Japan than in other industries, and long-term steady growth rate despite the recent recession and recovery illustrates a trend Thus, the structure of the franchise industry in Japan by analyzing the company's franchise industry in Korea for overseas expansion strategies are evaluated In this study, a plateau in Japan to get bigger and provide a starting point for the 2009 and 2010 Census of Japan Association of Chain and Franchise all over the franchise system through a comparative analysis of Japanese overseas franchise business structure and strategies, and identify the research Korea based on the company's overseas expansion strategy is aimed at For this purpose, literature review and statistical analysis of the number of chain stores industry results, sales trends over the following four results are derived. 1) services with emphasis laid plans enable one franchise 2) the flow of services to the aging franchise, nursing, health-oriented, early childhood education, beauty and related business expected to grow 3) Recognition of Japanese culture and understanding of the importance of the service sector to account for differences in 4) services business of the need for efforts to increase productivity are summarized Based on the results of this study, Korea Franchise companies in the industry, Japan IS overseas expansion strategy franchise industry awareness of cultural differences in the institutional environment and the strategy should be considered.

Comparative Analysis for Survival Period of Innovative SMEs and General SMEs (혁신형 중소기업과 일반 중소기업의 생존기간 비교분석)

  • Lee, Jun-won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.225-236
    • /
    • 2023
  • Policy implications were derived by comparing/analyzing innovative SMEs and general SMEs that obtained innovation certification from 2015 to 2021 in terms of survival period. Work experience, scale (employment, capital and debt size, sales and operating profit) Korean standard industry classification (2 digit) was used to select general SMEs similar to innovative SMEs. Survival period was calculated by defining suspension, closure and overdue equivalent to default as events. As a result of the survival analysis, innovative SMEs showed a 9.8% reduction in the risk of delinquency compared to general SMEs, indicating that the survival period of innovative SMEs was significantly longer. In addition, it was found that the work experience and size (employment, capital) of SMEs had a positive effect on the survival period, but debt had a negative effect on the survival period. This means that the innovation certification system centered on innovation capabilities and future growth potential is a significant indicator in terms of survival period. As a result, it was concluded that the benefits and support policies provided by the innovation certification system need to be more systematic and sophisticated by reflecting the work experience and industry for the actual growth and survival of SMEs.

  • PDF

Improvement of a Tree Cutting Permit System with Respect to Timber Logger's Consciousness (벌채업 관련자의 의식 조사를 통한 현행 벌채제도의 개선)

  • Park, Kyung-Seok;Lee, Seong-Youn;Choi, In-Hwa;Kim, Hyun-Sig;Ahn, Young-Sang;An, Ki-Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.710-721
    • /
    • 2012
  • This study is to find out the search of the desirable tree cutting permit system by investigating and analyzing timber logger's consciousness in Korea. A sample group, including 64 officers in 5 Regional Forest Services and 27 National Forest Stations, 161 local government of 322 officers and team leaders with cutting permits, and 308 tree loggers was surveyed. The survey results showed that the ongoing harvest year plan for national, public and private-type forests, which was applied differently, could be integrated as 3.73 points, which was not significant among the groups. A total of 95.1% of the national forest officers stated that the environmentally friendly harvesting system could be improved and that it is exempted from bad broadleaf trees and renewal of forest type (4.14 points). An environmentally friendly harvesting system including the type of forest and location status (slide, soil, etc) is needed (3.87 points). Additionally, the round timber purchased from tree loggers managed in 2009 was about 10.6% of the domestic timber supply ($3,176,000m^3$) and round timber sales were about 50.1%. A total of 72% of the loggers suggested that a environmentally friendly harvesting system is needed (4.11 points). These results show that a new system for harvesting timber is needed to replace the current environmentally unfriendly harvesting system, and that tree loggers should be registered for management.

The Effect of Franchisor's On-going Support Services on Franchisee's Relationship Quality and Business Performance in the Foodservice Industry (외식 프랜차이즈 가맹본부의 사후 지원서비스가 가맹점의 관계품질과 경영성과에 미치는 영향)

  • Lee, Jae-Han;Lee, Yong-Ki;Han, Kyu-Chul
    • Journal of Distribution Research
    • /
    • v.15 no.3
    • /
    • pp.1-34
    • /
    • 2010
  • Introduction The purpose of this research is to develop overall model which involves the effect of ongoing support services by franchisor on franchisee's relationship quality(trust, satisfaction, and commitment) and business performance(financial and non-financial performance), and to investigate the relationships among trust, satisfaction, commitment, financial and non-financial performance. This study also suggests franchise business or franchise system should be based on long-term orientation between franchisor and franchisee rather than short-term orientation, or transactional relationship, and proposes the most effective way of providing on-going support services by franchisor with franchisee thru symbiotic relationship among franchisor and franchisee Research Model and Hypothesis The research model as Figure 1 shows the variables on-going support services which affect the relationship quality between franchisor and franchisee such as trust, satisfaction, and commitment, and also analyze the effects of relationship quality on business performance including financial and non-financial performance We established 12 hypotheses to test as follows; Relationship between on-going support services and trust H1: On-going support services factors (product category & price, logistics service, promotion, information providing & problem solving capability, supervisor's support, and education & training support) have positive effect on franchisee's trust. Relationship between on-going support services and satisfaction H2: On-going support services factors (product category & price, logistics service, promotion, information providing & problem solving capability, supervisor's support, and education & training support) have positive effect on franchisee's satisfaction. Relationship between on-going support services and commitment H3: On-going support services factors (product category & price, logistics service, promotion, information providing & problem solving capability, supervisor's support, and education & training support) have positive effect on franchisee's commitment. Relationship among relationship quality: trust, satisfaction, and commitment H4: Franchisee's trust has positive effect on franchisee's satisfaction. H5: Franchisee's trust has positive effect on franchisee's commitment. H6: Franchisee's satisfaction has positive effect on franchisee's commitment. Relationship between relationship quality and business performance H7: Franchisee's trust has positive effect on franchisee's financial performance. H8: Franchisee's trust has positive effect on franchisee's non-financial performance. H9: Franchisee's satisfaction has positive effect on franchisee's financial performance. H10: Franchisee's satisfaction has positive effect on franchisee's non-financial performance. H11: Franchisee's commitment has positive effect on franchisee's financial performance. H12: Franchisee's commitment has positive effect on franchisee's non-financial performance. Method The on-going support services were defined as an organized system of continuous supporting services by franchisor for the purpose of satisfying the expectation of franchisee based on long-term orientation and classified into six constructs such as product category & price, logistics service, promotion, providing information & problem solving capability, supervisor's support, and education & training support. The six constructs were measured agreement using a 7-point Likert-type scale (1 = strongly disagree to 7 = strongly agree)as follows. The product category & price was measured by four items: menu variety, price of food material provided by franchisor, and support for developing new menu. The logistics service was measured by six items: distribution system of franchisor, return policy for provided food materials, timeliness, inventory control level of franchisor, accuracy of order, and flexibility of emergency order. The promotion was measured by five items: differentiated promotion activities, brand image of franchisor, promotion effect such as customer increase, long-term plan of promotion, and micro-marketing concept in promotion. The providing information & problem solving capability was measured by information providing of new products, information of competitors, information of cost reduction, and efforts for solving problems in franchisee's operations. The supervisor's support was measured by supervisor operations, frequency of visiting franchisee, support by data analysis, processing the suggestions by franchisee, diagnosis and solutions for the franchisee's operations, and support for increasing sales in franchisee. Finally, the of education & training support was measured by recipe training by specialist, service training for store people, systemized training program, and tax & human resources support services. Analysis and results The data were analyzed using Amos. Figure 2 and Table 1 present the result of the structural equation model. Implications The results of this research are as follows: Firstly, the factors of product category, information providing and problem solving capacity influence only franchisee's satisfaction and commitment. Secondly, logistic services and supervising factors influence only trust and satisfaction. Thirdly, continuing education and training factors influence only franchisee's trust and commitment. Fourthly, sales promotion factor influences all the relationship quality representing trust, satisfaction, and commitment. Fifthly, regarding relationship among relationship quality, trust positively influences satisfaction, however, does not directly influence commitment, but satisfaction positively affects commitment. Therefore, satisfaction plays a mediating role between trust and commitment. Sixthly, trust positively influence only financial performance, and satisfaction and commitment influence positively both financial and non-financial performance.

  • PDF

Design and Analysis of Online Advertising Expenditure Model based on Coupon Download (쿠폰 다운로드를 기준으로 하는 온라인 광고비 모델의 설계 및 분석)

  • Jun, Jung-Ho;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.1-19
    • /
    • 2010
  • In offline environment, unlike traditional advertising model through TV, newspaper, and radio, online advertising model draws instantaneous responses from potential consumers and it is convenient to assess. This kind of characteristics of Internet advertising model has driven the growth of advertising model among various Internet business models. There are, conventionally classified, CPM (Cost Per Mile), CPC (Cost Per Click), and CPS (Cost Per Sales) models as Internet advertising expenditure model. These can be examined in manners regarding risks that stakeholders should stand and degree of responsibility. CPM model that is based on number of advertisement exposure is mechanically exposed to users but not actually recognized by users resulting in risk of wasted expenditure by advertisers without any advertising effect. While on aspect of media, CPS model that is based on conversion action is the most risky model because of the conversion action such as product purchase is determined by capability of advertisers not that of media. In this regard, while there are issue of CPM and CPS models disadvantageously affecting only one side of Internet advertising business model value network, CPC model has been evaluated as reasonable both to advertisers and media, and occupied the largest segment of Internet advertising market. However, CPC model also can cause fraudulent behavior such as click fraud because of the competition or dishonest amount of advertising expenditure. On the user aspect, unintentionally accessed advertisements can lead to more inappropriate expenditure from advertisers. In this paper, we suggest "CPCD"(Cost Per Coupon Download) model. This goes beyond simple clicking of advertisements and advertising expenditure is exerted when users download a coupon from advertisers, which is a concept in between CPC and CPS models. To achieve the purpose, we describe the scenario of advertiser perspective, processes, participants and their benefits of CPCD model. Especially, we suggest the new value in online coupon; "possibility of storage" and "complement for delivery to the target group". We also analyze the working condition for advertiser by a comparison of CPC and CPCD models through advertising expenditure simulation. The result of simulation implies that the CPCD model suits more properly to advertisers with medium-low price products rather than that of high priced goods. This denotes that since most of advertisers in CPC model are dealing with medium-low priced products, the result is very interesting. At last, we contemplate applicability of CPCD model in ubiquitous environment.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Venture Capital Investment and the Performance of Newly Listed Firms on KOSDAQ (벤처캐피탈 투자에 따른 코스닥 상장기업의 상장실적 및 경영성과 분석)

  • Shin, Hyeran;Han, Ingoo;Joo, Jihwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.33-51
    • /
    • 2022
  • This study analyzes newly listed companies on KOSDAQ from 2011 to 2020 for both firms having experience in attracting venture investment before listing (VI) and those without having experience in attracting venture investment (NVI) by examining differences between two groups (VI and NVI) with respect to both the level of listing performance and that of firm performance (growth) after the listing. This paper conducts descriptive statistics, mean difference, and multiple regression analysis. Independent variables for regression models include VC investment, firm age at the time of listing, firm type, firm location, firm size, the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company. Throughout this paper, results suggest that listing performance and post-listed growth are better for VI than NVI. VC investment shows a negative effect on the listing period and a positive effect on the sales growth rate. Also, the amount of VC investment has negative effects on the listing period and positive effects on the market capitalization at the time of IPO and on sales growth among growth indicators. Our evidence also implies a significantly positive effect on growth after listing for firms which belong to R&D specialized industries. In addition, it is statistically significant for several years that the firm age has a positive effect on the market capitalization growth rate. This shows that market seems to put the utmost importance on a long-term stability of management capability. Finally, among the VC characteristics such as the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company, we point out that a higher market capitalization tends to be observed at the time of IPO when the level of expertise of anchor VC is high. Our paper differs from prior research in that we reexamine the venture ecosystem under the outbreak of coronavirus disease 2019 which stimulates the degradation of the business environment. In addition, we introduce more effective variables such as VC investment amount when examining the effect of firm type. It enables us to indirectly evaluate the validity of technology exception policy. Although our findings suggest that related policies such as the technology special listing system or the injection of funds into the venture ecosystem are still helpful, those related systems should be updated in a more timely fashion in order to support growth power of firms due to the rapid technological development. Furthermore, industry specialization is essential to achieve regional development, and the growth of the recovery market is also urgent.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

Developments of Local Festival Mobile Application and Data Analysis System Applying Beacon (비콘을 활용한 위치기반 지역축제 모바일 애플리케이션과 데이터 분석 시스템 개발)

  • Kim, Song I;Kim, Won Pyo;Jeong, Chul
    • Korea Science and Art Forum
    • /
    • v.31
    • /
    • pp.21-32
    • /
    • 2017
  • Local festivals form the regional cultures and atmosphere of communication; they increase the demand of domestic tourism businesses and thus, have an important role in ripple effects (e.g. regional image improvement, tourist influx, job creation, regional contents development, and local product sales) and economic revitalization. IoT (Internet of Thing) technologies have been developed especially, beacon-one of the IoT services has been applied as plenty of types and forms both domestically and internationally. However, notwithstanding expansion of current digital mobile technologies, it still remains as difficult for the individual to track the information about all the local festivals and to fulfill the tourists' needs of enjoying festivals given the weak strategic approaches and advertisement activities. Furthermore, current festival-related mobile applications don't function well as delivering information and have numerous contents issues (e.g. ways of information delivery within the festival places, independent application usage for each festival, one time usage due to one time event). This research, based on the background mentioned above, aims to develop the local festival mobile application and data analysis system applying beacon technology. First of all, three algorithms were developed, namely, 'festival crowding algorithm', 'visitor stats algorithm', and 'customized information algorithm', and then beta test was followed with the developed application and data analysis system. As a result, they could form the database of visitors' types and behaviors, and provide functions and services, such as personalized information, waiting time for festival contents, and 'hot place' function. Besides, in Google Play store, they also got the titles given with more than 13,000 downloads within first three months and as the most exposed application related with festivals; and, thus, got credited with their marketability and excellence. This research follows this order: chapter 2 shows the literature review of local festival related with technology development, beacon service, and festival application. In Chapter 3, design plans and conditions are described of developing local festival mobile application and data analysis system with beacon. Chapter 4 evaluates the results of the beta performance test to verify applicability of the developed application and data analysis system, and lastly, chapter 5 explains the conclusion and suggests the future research.