• 제목/요약/키워드: Safety-critical System

검색결과 876건 처리시간 0.025초

Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review

  • Min, Sea-Cheol;Choi, Young-Jin
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.279-293
    • /
    • 2009
  • Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.

철도신호제어용 소프트웨어 신뢰도 모델링에 관한 연구 (A Study on the Reliability of Software for Railway Signalling Systems)

  • 이재호;박영수
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.601-605
    • /
    • 2006
  • Reliability of the Railway signaling system which is safety critical is determined by reliability of hardware and software. Reliability of hardware is easily predicted and demonstrated through lots of different studies and environmental tests, while that of software is estimated by the iterative test outcomes so estimates of reliability will depend on the inputs. Combinations of inputs to and outputs from the software may be mostly combinatoric and therefore all the combinations could not be tested. As a result, it has been more important to calculate reliability by means of a simpler method. This paper identifies the reliability prediction equation applicable to reliability prediction for railway signaling system software, and performs the simulation of onboard equipment of automatic train control for high speed train to review reliability prediction and validity.

Predictive Hybrid Redundancy using Exponential Smoothing Method for Safety Critical Systems

  • Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.126-134
    • /
    • 2008
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires (steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive hybrid redundancy that can remove most erroneous values. In addition, several numerical simulation results are given where the predictive hybrid redundancy outperforms wellknown average and median voters.

EVALUATION OF STATIC ANALYSIS TOOLS USED TO ASSESS SOFTWARE IMPORTANT TO NUCLEAR POWER PLANT SAFETY

  • OURGHANLIAN, ALAIN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.212-218
    • /
    • 2015
  • We describe a comparative analysis of different tools used to assess safety-critical software used in nuclear power plants. To enhance the credibility of safety assessments and to optimize safety justification costs, $Electricit{\acute{e}}$ de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Currently, new industrial tools based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software packages is substantially improved. In the first part of this article, we present the analysis principles of the tools used in our experimentation. In the second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools. In the last part, we present an overview of the results and the limitations of the tools.

Grafcet을 이용한 연동로직 분석 (Analysis of Interlocking Functions using Gragcet Language)

  • 황종규;이종우;이재호;최규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.471-473
    • /
    • 1999
  • Recently, the computer based control systems instead of conventional relays circuitry are widely used to industrial applications, and also those technology is available to railway signaling which are safety-critical systems. However, the safety and reliability of software for those systems are harder to demonstrate than in traditional relays circuitry because the faults or errors can not be analyzed and predicted to those systems. So, the safety problems are crucial more and more in computer based control system. In this paper, the GRAFCET(GRAphe Fonctionnel do Commande Etape/Transition) language is used as a analysis and verification tool for safety-critical interlocking logic. The general description for Grafcet notation are provided and the general modeling for interlocking logic is presented.

  • PDF

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰 (A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System)

  • 한석중
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.

철도 시스템 개발에서 시스템공학 프로세스와 안전성 평가를 동시에 고려한 통합 프로세스에 관한 연구 (A Study on Integrated SE Process for the Development of the Railway Systems with Safety Assessment Included)

  • 윤재한;이재천;홍선호
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.438-443
    • /
    • 2007
  • This paper proposes an integrated SE process for the development of railway systems with safety assessment included. Although the safety assessment process must be performed with SE process properly with good coordination, the interfaces between the two processes have not been clear. Thus, in many of safety critical system developments in Korea, it is difficult to assess safety in proper development phase. The process model proposed in this paper is based on both the concept of system life cycle and the repetitive use of SE process. In each of development phases, appropriate safety assessment methods are described. Also the evaluation of the integrated system incorporating safety factors is described. The resultant process model is expressed by the Enhanced Functional Flow Block Diagram (EFFBD) using a CASE tool. The model also allows timeline analysis for identifying activity flow and data flow, resulting in the effective management of process. In conclusion, the integrated process enable both the SE process and safety assessment process to cooperate with each other from early development phase throughout the whole system life cycle.

철도시스템 소프트웨어 변경영향 분석을 위한 자동화 도구 개발 (Implementation of Automatic Tool for S/W Change Impact Analysis in Railway System)

  • 조현정;황종규;김용규
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.95-100
    • /
    • 2009
  • Recent advances in computer technology have brought more dependence on software to railway systems. Hence, the safety assurance of the vital software running on the railway system is very critical task and yet, not many works have been done. While much efforts have been reported to improve electronic hardware's safety, not so much systematic approaches to evaluate software's safety. In this paper, we suggested an automated analysis tool for S/W change impact in railway system, and presented its result of implementation. The analysis items in the implemented tool had referred to the international standards in relation to the software for railway system, such as IEC 61508 and IEC 62279. In these international standards, 'change impact analysis' for railway system S/W has to be required mandatorily. The proposed tool can be utilized at the assessment stage and also the software development stage.

Applications of online simulation supporting PWR operations

  • Wang, Chunbing;Duan, Qizhi;Zhang, Chao;Fan, Yipeng
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.842-850
    • /
    • 2021
  • Real Time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, Online Simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purposes of analyzing plant events and providing indicative signs of malfunctioning. An OLS system has been developed to support PWR operations for CPR1000 plants. The OLS system provides graphical user interface (GUI) for operators to monitor critical plant operations for preventing faulty operation or analyzing plant events. Functionalities of the OLS system are depicted through the maneuvering of the GUI for various OLS functional modules in the system.