• 제목/요약/키워드: Safety wheel

검색결과 444건 처리시간 0.025초

곡선부 주행안전성 향상을 위한 윤축 조향 제어 (Wheelset Steering Control for Improvement a Running Safety on Curved Track)

  • 허현무;안다훈;김남포;심경석;박태원
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

차륜과 레일간의 상호 작용력에 의한 틸팅차량 윤축의 응력분포 (Stress Distribution of Tilting Vehicles Wheel-set by Interaction Force Between Wheel and Rail)

  • 함영삼;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.363-364
    • /
    • 2006
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. In this paper, when interaction force between wheel and rail happens to wheel-set of tilting vehicles, it analyzes stress distribution and verified safety.

  • PDF

틸팅차량용 차륜의 구조 강도 및 동적 성능 해석 (Strength and Dynamic Performance Analysis for Tilting Train Wheel)

  • 허현무;권성태;서정원;권석진
    • 한국정밀공학회지
    • /
    • 제23권11호
    • /
    • pp.85-92
    • /
    • 2006
  • For the improvement of a conventional railway speed, tilting train(Tilting Train express) is under the development aiming for a maximum speed 180km/h. Compared to the existing conventional rolling-stock, tilting train could take an advantage of speed improvement about $20{\sim}30%$ on curve sections due to the improvement of cowing performance. However, this speed increasement creates a severe load at wheels, thus it is necessary to study the safety of wheel for tilting train preferentially. On the other hand, it is under consideration that the wheel for conventional railway rolling-stock at speeds of 150km/h will be applied to tilting train at speeds of 180km/h. In this paper, we have studied the strength of wheel structure, the geometrical contact characteristics, and the dynamic performance of wheel to evaluate the safety of wheel for tilting train.

철도 차량에서의 차륜 답면 등가구배 특성 (Equivalent Conicity Characteristics of Wheel Tread on the Rolling Stock)

  • 이찬우;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.641-644
    • /
    • 2003
  • The running safety of the rolling stock depends on the design characteristics and the contact condition between wheel and railway. In this study, it is analyzed how equivalent conicity of wheel tread or its characteristics has influence on the running safety.

  • PDF

철도차량 차축의 굽힘하중에 의한 차륜/레일 접촉력 계산에 관한 연구 (A Study on the contact force calculation by bending load of axle of rolling stocks)

  • 함영삼
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.481-484
    • /
    • 2008
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. Element that analyze derailment coefficient is consisted of wheel load and lateral force. In this paper, studied about method that calculate vertical force(wheel load) by bending load of axle in rolling stocks.

  • PDF

자동차용 휠의 응력을 고려한 근사 최적 설계 (Approximate Optimization Design Considering Automotive Wheel Stress)

  • 이현석;이종수
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

철도차량용 차륜 플레이트에서의 새로운 횡압 계측방법 (New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles)

  • 함영삼;전현규;서정원;이동형;권석진
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.621-625
    • /
    • 2012
  • Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.

한국형 고속철도차량의 차륜/레일 작용력 측정 및 주행안전성 평가 (Evaluation of running safety and measuring wheel/rail force for korean high speed railway vehicle)

  • 함영삼;오택열;백영남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.507-512
    • /
    • 2003
  • The railroad is a means of large transportation which has many latents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static toad test, running test result of main line.

  • PDF

무선계측을 이용한 휠로더 구동토크의 주요인 분석 (Analysis of the Main Factor of Wheel Loader Torque via Wireless Measurements)

  • 강병익;동홍일;김병기;최용훈
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.24-29
    • /
    • 2020
  • Measuring the torque of the wheel loader of a driving device is a preemptive task to ensure its performance. In this study, wireless torque measurements were successfully conducted. Moreover, based on the experimental results and the adopted design method, the key factor of torque generation, which is the main load in driving devices, was analyzed. Other data not analyzed in this paper will be the basis for the logical design of wheel loader-based driving devices.

윤축에 로드셀을 설치하기 위한 하중간의 연성 해석 (Analysis of Coupling Term Between Vertical Load and Lateral Load for Install Load Cell to Wheel-set)

  • 함영삼;서정원;김승록;홍재성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.41-42
    • /
    • 2006
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. In this paper, analysis of coupling term between vertical load and lateral load for install load cell to wheel-set. This result is going to be utilized in formality that verify running safety of tilting vehicles.

  • PDF