• Title/Summary/Keyword: Safety wheel

Search Result 444, Processing Time 0.026 seconds

The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking (전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구)

  • Cho, Suyeon;Seo, Donghyun;Park, Junsung;Shin, Waegyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

A Study on the Early Detection System on Altering Course of a Target Ship(2) (선박충돌 회피능력 향상을 위한 선회조기 감지시스템 연구개발(2))

  • Choi, Woon-Kyu;Jung, Chang-Hyun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.38
    • /
    • pp.69-77
    • /
    • 2015
  • If we don't know the intention of altering course of a target ship when being in a head-on or a crossing situation, we may be confused about our decision making to change our course for collision avoidance and be in a danger of collision. In order to solve these problems, we need to develop an automatic detection system on altering course of a target ship for efficient collision avoidance. In this paper, we proposed an early detection system on altering course of a target ship using the steering wheel signal. This system will contribute to the reduction of collision accidents and also be used to the VTS system and the analysis of marine accidents.

  • PDF

Development of a Climbing Robot for Inspection of Bridge Cable (교량 케이블 점검용 이동 로봇 개발)

  • Kim, Ho-Moon;Cho, Kyeong-Ho;Jin, Young-Hoon;Liu, Fengyi;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • In this paper, we propose a cable climbing robot which can climb up and down the cables in the bridges. The robot mechanism consists of three parts: a wheel based driving mechanism, adhesion mechanism, and safe landing mechanism. The wheel based driving mechanism is driven by tooth clutches and motors. The adhesion mechanism plays the role of maintaining adhesion force by a combination of pantograph, ball screw, and springs even when the power is lost. The safe landing mechanism is developed for guaranteeing the safety of the robot during operations on cables. It can make the robot fall down with reduced speed by dissipating the gravitational forces. The robot mechanism is designed and manufactured for validating its effectiveness.

Dynamic Analysis of Variable-Gauge Wheelset (궤간가변대차용 윤축시스템의 동역학적 해석)

  • Lee Dong-Won;Bae Dae-Sung;Han Joon-Suk;Jang Seung-Ho;Na Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.773-777
    • /
    • 2004
  • The variable-gauge wheelset drives on the variable railways. It doesn't need to replace or move the carriages to another bogie parts. This paper is for dynamic analysis of the variable-gauge wheel set. 3D-Virtual Mock-up. program was developed to verify the operating mechanism and understand dynamic characteristics for German RAFIL- V variable-gauge wheel set. When the system is going through the width-variable railway, its safety depends on the stiffness and velocity. So the numerical and contact model of this system were developed. This solution is useful to analyze dynamic characteristics for variable-gauge wheelset.

  • PDF

Analysis of Dynamic Behavior for Design Review of the Korean High Speed Prototype Test Train (한국형 고속전철 시제차량 설계검증을 위한 동특성 해석)

  • ;;Johannes Picht
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1232-1240
    • /
    • 2001
  • In this study. a computer simulation of the Korean High Speed Prototype Test Train was performed to investigate the dynamic behavior(running stability. safety and comfort) in detail design process. The simulation model which was prepared by ADAMS/Rail V10.l consists of power car and middle car assembly (2 motorized cars + 3 trailer cars). The nonlinear analysis takes into account the full vehicle model including wheel/rail contact and the influence of disturbed track. Throughout the dynamic calculation of KHST on the straight and the curved track. accelerations in car body. ride comforts and wheel rail forces were investigated.

  • PDF

Analysis of Economical Validity for Implementation of Telematics in Construction Fields (Telematics 기술의 건설현장 적용을 위한 경제적 타당성 분석)

  • Lee Sung Hyun;Lee Dong Wook;Koo Ja Kyung;Lee Tai Sik
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.444-453
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

The introduction of Speed Qualification Test as regulated by US CFR regarding railway running safety (철도차량 주행안전성관련 미국 연방법규(CFR)에 따른 본선 Speed Qualification Test 개요)

  • Lee, Kang-Wun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1-5
    • /
    • 2010
  • The Hyundai Rotem company is due to be conducted the main line Speed Qualification Test as regulated by CFR for SEPTA EMU and SCRRA Bi-level coach project. The regulated test items per 49CFR213.345 are wheel/rail interaction forces and carbody/truck accelerations during running on main line. Therefore the special two sets of instrumented wheelset (IWS) per each project have been made for measuring the interaction forces between wheel and rail at four wheels of one truck during running on main line. In this paper, regarding Speed Qualification Test, the required test items and data analysis method per 49CFR213.345 and the preparation status of instrumented wheelsets (IWS) are introduced.

  • PDF

A Study on the Measuring Method of Disc Braking Force for HSR 350x (한국형 고속전철의 디스크 제동력 측정 방법에 관한 연구)

  • Kim, Seog-Won;Kim, Young-Guk;Park, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.244-251
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to combine properly the various brakes. Korean high speed train (HSR 350x) has adopted a combined electric and mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, the measuring method that can take a measurement of the braking forces for disc brake and wheel disc brake has been suggested and we have verified that this method is valid through on-line test of HSR 350x.

Simulations for an ASCU of a Train Brake including a Pneumatic Model (공압모델이 포함된 철도차량 제동 ASCU 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93-97
    • /
    • 2010
  • Wheel skids may occur during train operations due to low adhesion at the wheel-rail contact point abnormally, and the skids, in turn, result in flats appearing on the wheels, which affect safety and ride comfort significantly. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents simulation studies on an anti-skid control unit (ASCU) with a brake system of a rolling stock including a pneumatic model for brake power supply and dump valve operation.

  • PDF