DOI QR코드

DOI QR Code

A Study of Model-Based Aircraft Safety Assessment

모델기반 항공기 안전성평가에 관한 연구

  • Received : 2021.01.22
  • Accepted : 2021.04.13
  • Published : 2021.10.31

Abstract

Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

도심 항공 모빌리티(Urban Air Mobility, UAM)의 핵심 이동수단인 개인 항공기(PAV) 및 화물 운송용 무인항공기(Cargo UAS)는 항공기 시스템의 설계 적합성과 안전성을 동시에 확보해야 한다. 이를 입증하여 형식 증명(인증)을 받으려면 안전성 분석 및 평가를 항공기 개발과정 초기부터 전체 주기에 걸쳐서 체계적으로 수행해야한다. 그러나 안전 필수 항공시스템의 복잡도가 증가하고 최첨단 시스템이 적용됨에 따라 기존의 경험기반, 절차기반의 안전성평가만으로는 항공기 시스템의 안전성을 객관적으로 평하기 어려워졌다. 이러한 문제를 해결하기 위해 국내외적으로 모델링 및 시뮬레이션 기술을 이용한 모델기반 안전성평가(Model-based Safety Assessment, MBSA)가 활발히 연구되고 있다. 본 논문에서는 비행 시뮬레이터와 타겟의 시뮬레이션 모델을 연동한 통합 비행 시뮬레이터를 활용한 모델기반 안전성평가 프레임워크를 제안하였다. 공중충돌방지시스템(Traffic Collision Avoidance System, TCAS) 과 휠 제동 시스템 (Wheel Brake System, WBS) 사례연구를 통해 제안된 프레임워크를 UAM 안전성평가에 적용 가능함을 확인하였다.

Keywords

References

  1. Seung Woo Yoo and Jin Young Kwon, "System safety evaluation for aircraft certification," Journal of Aviation Development of Korea, no. 2, pp. 191-210, Jun 2006.
  2. SAE, "Guidelines for Development of Civil Aircraft and Systems," ARP4754A, 2010.
  3. SAE, "Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment," ARP4761, 1996.
  4. R. Douglas, David D. et al. "4.4. 2 incose systems engineering handbook v3. 2: Improving the process for se practitioners," INCOSE International Symposium. vol. 20, no. 1, 2010.
  5. Seung Woo Yoo and In Gul Kim, "A Study on the Implementation of Aircraft System Safety Assessment using Probabilistic Analysis of Failure Data," Journal of Aerospace System Engineering, vol. 14, no. 0, pp. 31-38, March 2020.
  6. Peng Wang, "Formal Model Based Safety Analysis Methods and the Application," Civil Aircraft Electrical Power System Safety Assessment, pp. 259-287, 2017.
  7. A. Joshi, and M. Heimdahl, "Model-Based Safety Analysis Final Report," NASA Techreport, 2006.
  8. Ju-young Kim, "Developing an Integrated Simulator for Verifying Sense and Avoid Equipment for UAVs," Master's Thesis, Korea Aerospace University, Goyang, Korea, 2016.
  9. Gyeong Min Baek, "Avionics development environment using hardware-in-the-loop simulation," Master's Thesis, Korea Aerospace University, Goyang, Korea, 2016.
  10. Dong-woo Lee, Ip-su Kim and Jong-whoa Na, "A Case Study on Safety Analysis Procedure of Aircraft System using the Relex," The Journal of Korea Navigation Institute, vol. 22, no. 3, pp. 179-188, Jun 2018.
  11. R. Leanna, Developing Safety-Critical Software, CRC Press, Boca Raton, Florida, 2013.
  12. Hochstrasser, Markus, et al. "Aspects of a consistent modeling environment for DO-331 design model development of flight control algorithms," Advances in Aerospace Guidance, Navigation and Control, pp. 69-86, 2018.
  13. RTCA, "Software Considerations in Airborne Systems and Equipment Certification," DO-178C, 2011.
  14. FAA, "Introduction to TCAS II Version 7.1," Feb 28, 2011.