• 제목/요약/키워드: Safety function analysis

검색결과 996건 처리시간 0.028초

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

효율적 방재시설을 위한 정량적 위험도 분석 (An effective prevention facilities for railway tunnel design by using Quantitative Risk Analysis)

  • 권순섭;신화철;정지승;민대홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1080-1084
    • /
    • 2007
  • Recently, as demands of new railway and the relocation of existing line, a number of tunnel structures have been constructed. Tunnel structures contribute to minimize the cost and time of transport, but in case of railway fire accident bring serious damages of human life caused by narrowness of shelter, smoke and high temperature, difficulty in rescue. For that reason, at the beginning of plan of tunnel, the optimum design of safety facility in tunnel for minimizing the risks and satisfying the safety standard is needed. In this study, QRA(Quantitative Risk Analysis) technique is applied to design of railway tunnel for assuring the safety function and estimating the risk of safety. The case study is carried out to verify the QRA technique for railway tunnels in Iksan-Sili.

  • PDF

원자력 발전소 배관의 응력부식에 의한 파손확률 해석 (Analysis of Failure Probabilities of Pipes in Nuclear Power Plants due to Stress Corrosion Cracking)

  • 박재학;이재봉;최영환
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.6-12
    • /
    • 2011
  • The failure probabilities of pipes in nuclear power plants due to stress corrosion are obtained using the P-PIE program, which is developed for evaluating failure probability of pipes based on the existing PRAISE program. Leak, big leak and LOCA(loss of coolant accident) probabilities are calculated as a function of operating time for several pipes in a domestic nuclear plant. The sensitivity analysis is also performed to find out the important parameters for the failure of pipes due to stress corrosion. The results show that the steady state oxygen concentration and steady state temperature are important parameters and failure probability is very low when the oxygen concentration is maintained according to the regulation.

국가자격도입과 산업안전 재해예방의 연계성에 관한 연구 (A Study about the Corelation of Calaity Prevention on the Industrial safety and Incoming National Qualification System)

  • 임성일;박재현;이일우;강경식
    • 대한안전경영과학회지
    • /
    • 제14권2호
    • /
    • pp.103-112
    • /
    • 2012
  • The construction industry in Korea after the Korean-war has evolved until these days. But the construction industry accident severity rate and frequency is over then the All industry rate. This study analyzed the 'Disaster Statistical Yearbook' of the Korea Occupational Safety and Health Agency, based on the factors that affect construction accidents that is selected and fined the some factors the construction Disaster Prevention Factors. This study will develop the methodology for analyzes that the national qualification is effected to the construction industrial machine disaster prevention status. It suggest two ways to the establishment of disaster trends. First way is the disaster quantitative analysis and second way is comparing the statistical data and the analysis of expert opinion.

원자력발전소 안전등급 대형유도전동기의 기기검증 (Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants)

  • 이형우;고우식;류정현;박노길
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.72-77
    • /
    • 2007
  • A safety-related equipment for the nuclear power plant should be needed an equipment qualification. In this paper, the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5, 6 Nuclear Power Plants were presented. The method of qualification is a combination of experimental test and analytic method, which is composed of radiation exposure test, seismic simulation test, thermal aging analysis for non-metallic materials, and seismic analysis. The results showed that the motor performed its safety function with no failure mechanism under postulated service conditions.

유도전동기 베어링의 원거리 실시간 결함진단시스템 개발 (Web-based Real Time Failure Diagnosis System Development for Induction Motor Bearing)

  • 권오헌;이승현
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.1-8
    • /
    • 2005
  • The industrial induction motor is widely used in the rotating electrical machine for the transmission of power. It is very reliable equipment, but it could lead to the loss of production and lift when failure occurs. Therefore, the failure data is acquired and analyzed by attaching an exclusive instrument to existing induction motor. However, these instruments could lead to side effects, increasing the production costs, because they are very expensive. The purpose of this study is the development of an induction motor bearing failure diagnosis system constructed using LabVIEW which can be supplied the kernelled function, process monitoring and current signature analysis. In addition, the availability and reasonability of the constructed system was examined for an induction motor with failure defects in outer raceway and ball bearing. From the results, it shows that failure diagnosis system constructed is useful for real-time monitoring with detection of bearing defects over the web.

사고 영향 분석을 이용한 성능위주의 내화설계 (Performance Based Design of Passive Fire Protection Using Consequence Analysis)

  • 한동훈;이종호
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.102-107
    • /
    • 2004
  • Performance based design is a recent evolutionary step in the process of designing fire protection systems. In essence, it is a logical design process resulting in a solution that achieves a specified performance. Sometimes the prescriptive solutions presented in various codes and standards are too expensive or inflexible. Often the solutions do not and enables optimization of a solution for cost and function. In this study, performance based design was carried out to determine the extent of passive fire protection for oil terminal facilities. The results of performance based design were compared with those of prescriptive code based design. Performance based design is not always more economic than prescriptive code based design but provides more reliable and effective design that is fit for the purpose.

주행 시뮬레이션을 이용한 차량간 상호작용에 따른 사고발생가능성 분석 (Analysis of Crash Potential by Vehicle Interactions Using Driving Simulations)

  • 김윤종;오철;박수빈;최새로나
    • 한국ITS학회 논문지
    • /
    • 제17권2호
    • /
    • pp.98-112
    • /
    • 2018
  • 공격운전은 상대방 운전자에 대한 공격 의지를 가지고 위협을 가하는 매우 위험한 운전행태이다. 기존 연구의 경우 공격운전자에 대한 주행특성 및 유발요인 등 공격운전자를 초점으로 한 연구가 대부분인 것으로 나타났다. 그러나 공격운전을 안전성 관점에서 분석하기 위해서는 공격운전 가해자와 피해자간의 상호작용에 대한 분석이 필요하다. 따라서 본 연구에서는 Multi-Agent 주행시뮬레이션 환경을 구축하여 공격운전 가해자와 공격운전 피해자간의 차량간격 및 상대속도를 통해 상호작용을 분석하였다. 공격운전 가해자와 피해자의 가감속 패턴을 파악하고 차간거리를 통해 TTC(Time-to-Coillison)를 도출하였다. 또한 도출된 TTC를 EDF(Exponential Decay Function)를 통해 사고발생가능성으로 전환하여 일반운전과 공격운전의 사고발생가능성을 분석하였다. 분석결과, 공격운전 시 일반운전에 비해 사고발생가능성이 높은 것으로 나타났다. 본 연구결과를 통해 공격운전의 위험성을 경고하며, 공격운전 관리방안 수립을 위한 기초연구로 활용될 수 있을 것으로 기대된다.

중·저준위 방사성폐기물 처분시설의 운영 중 사고에 대한 평가체계 개선 : 한국의 중·저준위 방사성폐기물 표층처분시설의 운영 중 안전성평가 적용사례 (Improvement of Safety Approach for Accidents During Operation of LILW Disposal Facility : Application for Operational Safety Assessment of the Near-surface LILW Disposal Facility in Korea)

  • 김현주;김민성;박진백
    • 방사성폐기물학회지
    • /
    • 제15권2호
    • /
    • pp.161-172
    • /
    • 2017
  • 중 저준위 방사성폐기물 처분시설의 운영 중 사고로 인한 방사선적 영향을 평가하기 위해서는 운영 중 발생 가능한 사고에 대한 타당성이 입증되어야 한다. 본 논문에서는 처분시설의 운영 중 사고분석 체계를 처분시설의 구성요소에 대한 안전기능분석, 잠재위험요소분석, 위험도분석, 그리고 향후 조치대안으로 사고평가체계를 개선하였다. 이를 위하여 위험도분석에 필요한 설계대안과 관리대안을 추가하여 설계-운영-평가가 연계되도록 하였다. 또한 운영 중 사고의 발생확률과 평가결과의 심각성에 따라 운영중 사고에 대한 분류기준을 제안하여 처분시설 운영 중 대표 사고시나리오에 대한 정당성을 확보하였다. 본 논문의 개선된 평가체계를 우리나라의 2단계 중 저준위 방사성폐기물 표층처분시설에 대한 처분시설 운영 중 사고분석의 사례에 대해 적용하였다.

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.