• Title/Summary/Keyword: Safety design and operation

Search Result 996, Processing Time 0.031 seconds

Implementation of a KPI Focused e-QMS: A Case Study in the Aerospace & Defense Industry (KPI 중심의 e-QMS 구현: 우주항공 및 방위 산업 사례 연구)

  • Jae Young Shin;Wan Seon Shin
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.131-154
    • /
    • 2023
  • Purpose: The purpose of this paper is to design an integrated informatization system that can manage quality & KPI by integrating management systems in the aerospace and defense industry, and study the effect on KPI when applied to related companies. Methods: The 7 management systems required for integration in the AS&D industry were studied, and an empirical analysis was conducted for H company in South Korea for the application of e-QMS integrated informatization & KPI system based on security environment and open quality. Results: The results of this study were analyzed to have an effect on the improvement of customer satisfaction and the positive improvement of quality failure cost in the aerospace and defense industry. And it was analyzed that it works to continuously comply with ethical management and environmental laws and prevent safety accidents. Conclusion: The greatest significance of this study is that it attempted to build an e-QMS integrated system in the aerospace and defense industry. Considering that the case of integrated management system and integrated operation of KPI in related industries has not been introduced in the existing literature, the results of this study will be shared as a meaningful preceding study in the era of digital quality information. In addition, the fact that the open-quality quality innovation methodology emphasizing measurement(M), tracking(T), and connection(C) was actually applied in an AS&D company and its effectiveness was objectively proven. It is expected that it will be a good paper for follow-up research.

A Study on Visibility Evaluation for Cabin Type Combine (캐빈형 콤바인의 시계성 평가에 관한 연구)

  • Choi, C.H.;Kim, J.D.;Kim, T.H.;Mun, J.H.;Kim, Y.J.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.120-126
    • /
    • 2009
  • The purpose of this study was to develop a visibility evaluation system for cabin type combine. Human's field of view was classified into five levels (perceptive, effective, stable gaze, induced, and auxiliary) depending on rotation of human's head and eye. Divider, reaper lever, gearshift, dashboard, and conveying part were considered as major viewpoints of combine. Visibilities of combine was evaluated quantitatively using the viewpoints and the human's field of view levels. The visibility evaluation system for cabin type combine was consisted of a laser pointer, stepping motors to control the direction of view, gyro sensors to measure horizontal and vertical angle, and I/O interface to acquire the signals. Tests were conducted with different postures ('sitting straight', 'sitting with $15^{\circ}$ tilt', 'standing straight', and 'standing with $15^{\circ}$ tilt'). The LSD (least significant difference) multiple comparison tests showed that the visibilities of viewpoints were different significantly as the operator's postures were changed. The results showed that the posture at standing with $15^{\circ}$ tilt provided the best visibility for operators. The divider of the combine was invisible due to blocking with the cabin frame at many postures. The reaper lever showed good visibilities at the postures of sitting or standing with $15^{\circ}$ tilt. The gearshift, the dashboard, and the conveying part had reasonable visibilities at the posture of sitting with $15^{\circ}$ tilt. However, most viewpoints of the combine were out of the stable gaze field of view level. Modifications of the combine design will be required to enhance the visibility during harvesting operation for farmers' safety and convenience.

An Individual Privacy Protection Design for Smart Tourism Service based on Location (위치 기반 스마트 관광 서비스를 위한 개인 프라이버시 보호 설계)

  • Cho, Cook-Chin;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.5
    • /
    • pp.439-444
    • /
    • 2016
  • This paper proposes the technique to protect the privacy of those who uses Smart Tourism Service based on location. The proposed privacy protection technique (1) generates a shared private key, OTK(One Time Key) without information exchanging Users with a Tourism Server and provides Users and a Tourism Server with message confidentiality by encrypting data with the key, (2) concatenates users' ID, login time(timestamp), and randomly-generated nonce, generates OTK by hashing with a hash function, encrypts users' location information and query by using the operation of OTK and XOR and provides Users and a Tourism Server with message confidentiality by sending the encrypted result. (3) protects a message replay attack by adding OTK and timestamp. Therefore, this paper not only provides data confidentiality and users' privacy protection but also guarantees the safety of location information and behavior pattern data.

Development and Performance Test of Solar Sail System for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 태양돛 개발 및 성능시험)

  • Song, Su-A;Kim, Seungkeun;Suk, Jinyoung;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.228-239
    • /
    • 2016
  • CNUSAIL-1 is a 3U-sized cube satellite with $4m^2$ small solar sail which is currently being developed at the Chungnam National University. The primary purpose of the CNUSAIL-1 is successful sail deployment in LEO and its operation for investigating its effect on satellite orbit and attitude as well as performing de-orbiting using the sail membranes as drag sail at the final phase. The system design and mechanism of solar sail deployment is introduced, and optical and tensile tests are carried out for the material of membranes and booms for its safety and performance verification. The ground test is carried out to verify its performance for sail deployment and satellite through comparison between folding methods by determining its folding patterns, thickness of spiral spring and angular velocity measurement in a low-friction environment.

A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra (광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구)

  • Park, Jun-Bum;Kang, Chan-Hoe;Kim, Kyung-Su;Choung, Joon-Mo;Yoo, Chang-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.

Opto-Mechanical Detailed Design of the G-CLEF Flexure Control Camera

  • Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.169-185
    • /
    • 2023
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.

Elements and Application of "SmartHome" Concept for Older Adults in USA (미국에서 노인을 위한 "스마트홈(SmartHome)" 개념의 요소와 적용)

  • Moon, Changho
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.17 no.4
    • /
    • pp.7-14
    • /
    • 2011
  • This paper is intended to suggest some reference materials for future elderly housing design, especially smart home, in Korea, by reviewing the elements and applications of smart home concept for older adults in USA. Research method includes collecting materials by attending the regular SmartHome$^{(R)}$ part meeting, the navigation of related homepages, and the analysis of collected materials. Current researches in Korea look initial stage and show some general principles without practical concept & technologies of elderly facilities. SeniorSmart$^{(R)}$ Center in USA started on August 2007 with the 3 parts of SmartHOME$^{(R)}$, SmartWHEELS$^{(R)}$ and SmartBRAIN$^{(R)}$. The Center has been doing various multidisciplinary research projects but slowing down the planned processes due to national economic recession. The major researches of SmartHome$^{(R)}$ part can be summarized as follows; CS-PFP( Continuous Scale Physical Function Performance) laboratory is being in operation to help older adults and families make the difficult decision regarding the ability and safety to live independently. Three levels of necessary laboratories from uninhabited space to senior living environment were accommodated for field research. As core technologies of SmartHome$^{(R)}$, predicting & warning system of fall risk on recognizing gait signature patterns to identify any deviation from the normal patterns of the older adults, home monitoring system which will send alerts to a specified relative and/or health care professional when vital signs of the older adults will not be within normal parameters, and Mobility & Research Clinic for evaluating, treating the older adults & multidisciplinary research are under development. SmartHome$^{(R)}$ has made collaborative research agreements for field laboratory with various retirement communities and also is continuing to work for experimental software engineering with the Fraunhofer Institute, Germany.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Hardware Design for Timing Synchronization of OFDM-Based WAVE Systems (OFDM 기반 WAVE 시스템의 시간동기 하드웨어 설계)

  • Huynh, Tronganh;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.473-478
    • /
    • 2008
  • WAVE is a short-to-medium range communication standard that supports both public safety and private operations in roadside-to-vehicle and vehicle-to-vehicle communication environments. The core technology of physical layer in WAVE is orthogonal frequency division multiplexing (OFDM), which is sensitive to timing synchronization error. Besides, minimizing the latency in communication link is an essential characteristic of WAVE system. In this paper, a robust, low-complexity and small-latency timing synchronization algorithm suitable for WAVE system and its efficient hardware architecture are proposed. The comparison between proposed algorithm and other algorithms in terms of computational complexity and latency has shown the advantage of the proposed algorithm. The proposed architecture does not require RAM (Random Access Memory) which can affect the pipe lining ability and high speed operation of the hardware implementation. Synchronization error rate (SER) evaluation using both Matlab and FPGA implementation shows that the proposed algorithm exhibits a good performance over the existing algorithms.

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.