• Title/Summary/Keyword: Safety Cabinet

Search Result 75, Processing Time 0.033 seconds

Reagent Cabinet Management System Using Danger Priority

  • Cao, Kerang;Kang, Inshik;Choi, Hyungwook;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.227-231
    • /
    • 2017
  • Recently, as the number of safety accidents caused by reagents increases, researches on a system that can reduce safety accidents are underway. Existing systems managed reagent cabinet through various sensors. On the other hand, there are disadvantages in that countermeasures against simultaneous danger situations are insufficient at multi-reagents cabinet. In order to solve this problem, this paper proposes a system to manage the reagents cabinet through danger priority. Danger priorities are selected through domestic chemical accident cases and the Chemical Safety Management Act. If a danger situation occurs in the reagent cabinet, make sure it is from a single or multiple reagent cabinets. For multiple reagent cabinets, compare the reagent cabinet priorities and run the device sequentially from the reagent cabinet with the highest priority. Thus, by operating the device according to the danger priority, the chain reaction can be prevented in advance and the reagent cabinet can be safely managed.

Development of the Cabinet Panel of Real-Time Availability Checks for Electrical Disaster Decreasing at Traditional Markets (재래시장 전기재해 감소를 위한 실시간 확인이 가능한 분전반 개발)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Shin, Seong-Su;Bae, Seok-Myung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.335-339
    • /
    • 2010
  • In this paper, in order to reduce the electrical disaster damage which is caused by with electrical equipment of traditional markets, we developed the cabinet panel and the electrical safety monitoring system which is able to monitor the electrical equipments condition(over current, leakage current, arc, WH, electrical fire factor etc.) at traditional markets. We constructed Test-bed for testing reliability of electrical safety monitoring system and cabinet panel. And we tested the cabinet for over current, leakage current and arc under the traditional markets actual condition. This paper will be used with the data for an demonstration project after compensating the defects which are occurred to operation of traditional markets actual loads.

Design of Control Cabinet Based on Safety PLC for Control Rod Control System (안전등급 PLC 기반 제어봉제어계통 제어함 설계)

  • Cheon, J.M.;Kim, C.K.;Kim, S.J.;Lee, J.M.;Kwon, S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.291-292
    • /
    • 2007
  • This paper deals with the design of control cabinet based on safety PLC for Control Rod Control System(CRCS). The CRCS controls the operation of the CRDMs(Control Rod Drive Mechanisms). The CRDM moves the control rods which regulate the reactor power. vertically in the reactor core. The Control Cabinet in CRCS makes and conveys control signals to the power cabinet which provides power to the CRDM. We designed the Control Cabinet, based on POSAFE-Q, safety PLC. The application programs working in PLC can be programmed by pSET(POSAFE-Q Software Engineering Tool), Identified Development Environment.

  • PDF

Design of Control Cabinet Based on Safety PLC for Reactor Power Control System (안전등급 PLC 기반 원자로 출력제어계통 제어함 설계)

  • Cheon, J.M.;Lee, J.M.;Kim, S.J.;Park, M.K.;Kwon, S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1630-1631
    • /
    • 2007
  • This paper deals with the design of control cabinet based on safety PLC for reactor power control system(PCS). The PCS controls the operation of the CEDMs(Control Element Drive Mechanisms). The CEDM moves the CEAs(Control Element Assemblies) which regulates the reactor power, vertically in the reactor core. The Control Cabinet in PCS makes and conveys control signals to the power cabinet which provides power to the CEDM. We designed the Control Cabinet, based on POSAFE-Q, safety PLC. The application programs working in PLC can be programmed by pSET, Identified Development Environment.

  • PDF

Dynamic Analysis and Structural Safety Evaluation of the Cabinet of a Reactor Safety System (원자로 보호계통 캐비닛의 동해석과 구조 안전성 평가)

  • Lee, Boo-Youn;Cho, Chung-Rae;Kim, Won-Jin;Jeong, Dong-Gwan;Shon, Jae-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.131-140
    • /
    • 2005
  • Responses of the cabinet of the reactor safety system under seismic leadings are analyzed, its dynamic characteristics and structural reliability being evaluated. Analyzed natural frequencies are compared with those measured from a resonance test. Structural safety of the cabinet is evaluated in consideration of the required response spectrums of the operation-base and safe-shutdown earthquakes. Transient responses of the cabinet are analyzed with input ground acceleration measured during the seismic test, accelerations being extracted at the locations of the main internal parts. The transient responses are compared with those from the seismic test, favorable results being shown.

A Management of Child Care Facility for Electrical Safety using Home-Smart Cabinet Panel(H-SCP) (지능형 홈 분전반을 이용한 영유아 시설 전기 안전 관리)

  • Ahn, Jae-Min;Lim, Young-Bae;Bae, Seok-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2144-2145
    • /
    • 2011
  • We carry out a demonstration project to verify performance of a Home- Smart Cabinet Panel(H-SCP) at the child care facility. It is difficult to prevent an electrical disaster using a existing cabinet panel because electrical events are invisible and unforeseeable. So we construct a integrated information system with a Home-Smart Cabinet Panel(H-SCP) for management of low-voltage customers. The integrated information system with the H-SCP maintain the transmitted data from H-SCP, alert a electrical event to a administrator and show a state of customer health in real time respectively. A manager of electrical safety can prevent electrical disaster to maintain electrical facilities after analysis on the integrated information system.

  • PDF

A study on the Internal Flow Analysis of Gas Cylinder Cabinet for Specialty Gas of Semiconductor (반도체용 특수가스 공급을 위한 가스캐비닛 내부 유동해석에 관한 연구)

  • Kim, Jung-Duck;Han, Seung-A;Yang, Won-Baek;Rhim, Jong-Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.74-81
    • /
    • 2020
  • In general, when manufacturing a semiconductor, a number of hazardous and dangerous substances such as flammability, toxic, and corrosiveness are used. In particular, semiconductors are manufactured using specialty gas in processes such as CVD and etching. The specialty gas is filled in a container in the state of compressed or liquefied gas, and a gas cylinder cabinet is used as a facility for supplying this specialty gas to the semiconductor manufacturing process. When a accident occurs in the gas supply system, gas is released through a pressure release device installed in the gas cylinder to secure the safety of the supply system. In this case, the gas released inside the gas cabinet, there is a risk of leaking to the outside. After that, by analyzing the gas flow in the gas cabinet, it is intended to identify the risk associated with leak and to provide measures to prevent accidents.

Reagent Cabinet Danger Priority Based Reagent Cabinet Safety Management System (시약장 위험 우선순위 기반 시약장 안전 관리 시스템)

  • Choi, Hyungwook;Lee, Jongwon;Kim, Changsu;Ryu, Seunghan;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.727-728
    • /
    • 2017
  • Recently, various accidents caused by reagents in laboratories have demanded a safety management system suitable for the danger situation. The existing system operated the equipment according to the temperature and humidity change inside the reagent cabinet, but the operation of the device corresponding to the danger situation and the countermeasures against many dangerous situations are insufficient. In order to solve this problem, this paper proposes a reagent cabinet safety management system based on the reagent cabinet danger priority in happen of accidents caused by reagents under management. The danger priority is type of reagents and selected by the danger situation that can be caused by the reagents. If a danger situation occurs, operate the device according to the selected danger priority and the type of danger situation. It is considered that the reagent cabinet can be safely managed by checking the danger situation in the reagent cabinet and operating the device according to the danger priority.

  • PDF

The Accident Analysis Caused by Dust of Electrical Installation in Vulnerable Area (전기설비 취약지역에서의 분진에 의한 사고영향 분석)

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Jong-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.345-348
    • /
    • 2008
  • In this paper, we investigated a dust pollution and spot survey of electrical installation in vulnerable area. From the survey results, we know that the dust was easily accumulated in cabinet panel because the cabinet panel cover was opened and the management of installation was not good. Although the dust pollution was not difference, the possibility of accident become increased by dust in salt area. Thus, it is necessary to variation of cabinet panel shape to prevention of electrical disaster in dust occurrence and another protection devices.

  • PDF

Android based Reagent Cabinet Safety Management System (안드로이드 기반 시약장 안전 관리 시스템)

  • Choi, Hyungwook;Min, Gyeongbae;Lee, Jongwon;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.579-580
    • /
    • 2017
  • Recently, as safety accidents by reagents increase in laboratories, systems are being developed to safely manage reagents. The existing system monitoring and manages the reagent through the web page, but the internal environment change of the reagent cabinet is considered or the remote monitoring and control function is insufficient. In order to solve this problem, this paper predicts the deterioration of the reagent loaded in the reagent cabinet. And we propose a system that can monitoring and control remotely. It predicts the deterioration of the reagent through the temperature attached to the inside of the reagent cabinet, the value measured by the humidity sensor and the validity period of the reagent, and sends a alert message to the manager. The manager monitoring and controls the reagent cabinet through the application. By predicting the deterioration of the reagents and remotely managing the reagents cabinet it is thought that safety accidents can be reduced.

  • PDF