• 제목/요약/키워드: Saalsch tz's theorem

검색결과 5건 처리시간 0.018초

A NEW PROOF OF SAALSCHÜTZ'S THEOREM FOR THE SERIES 3F2(1) AND ITS CONTIGUOUS RESULTS WITH APPLICATIONS

  • Kim, Yong-Sup;Rathie, Arjun Kumar
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.129-135
    • /
    • 2012
  • The aim of this paper is to establish the well-known and very useful classical Saalsch$\ddot{u}$tz's theorem for the series $_3F_2$(1) by following a different method. In addition to this, two summation formulas closely related to the Saalsch$\ddot{u}$tz's theorem have also been obtained. The results established in this paper are further utilized to show how one can obtain certain known and useful hypergeometric identities for the series $_3F_2$(1) and $_4F_3(1)$ already available in the literature.

EXTENSIONS OF EULER TYPE II TRANSFORMATION AND SAALSCHÜTZ'S THEOREM

  • Rakha, Medhat A.;Rathie, Arjun K.
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.151-156
    • /
    • 2011
  • In this research paper, motivated by the extension of the Euler type I transformation obtained very recently by Rathie and Paris, the authors aim at presenting the extensions of Euler type II transformation. In addition to this, a natural extension of the classical Saalsch$\ddot{u}$tz's summation theorem for the series $_3F_2$ has been investigated. Two interesting applications of the newly obtained extension of classical Saalsch$\ddot{u}$tz's summation theorem are given.

A NEW PROOF OF THE EXTENDED SAALSCHÜTZ'S SUMMATION THEOREM FOR THE SERIES 4F3 AND ITS APPLICATIONS

  • Choi, Junesang;Rathie, Arjun K.;Chopra, Purnima
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.407-415
    • /
    • 2013
  • Very recently, Rakha and Rathie obtained an extension of the classical Saalsch$\ddot{u}$tz's summation theorem. Here, in this paper, we first give an elementary proof of the extended Saalsch$\ddot{u}$tz's summation theorem. By employing it, we next present certain extenstions of Ramanujan's result and another result involving hypergeometric series. The results presented in this paper are simple, interesting and (potentially) useful.