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AN IDENTITY INVOLVING THE
GENERALIZED HYPERGEOMETRIC SERIES

Young JooN CHO AND TAE YOUNG SEO

ABSTRACT. We provide a generalization of Whipple’s quadratic
transformation formula for 3F5.

The generalized hypergeometric function with p numerator and g de-
nominator parameters is defined by
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where (@), denotes the Pochhammer symbol (or the shifted factorial) is
defined by, a any complex number,
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1 n =
) { 1 ifn = 0.
Using the fundamental property I'(z + 1) = 2I'(z) of the Gamma
function I, (), can be written in the form
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where I is the well-known Gamma function whose Weierstrass canonical
product form is given by

(3) Ty = ﬁ (1+7)e

~ being the Euler-Mascheroni’s constant defined by
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From (1), we can easily deduce the following formula:
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Setting & = 1 in (5) gives the natural property

('m0 <k <
(6) (~n) = ¢ @RE =R
0 if k> n.

In this note, a generalization of Whipple’s quadratic transformation
formula for 3F5 is considered. Indeed, we obtain the following quadratic
transformation formula:
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where [z] denotes the greatest integer less than or equal to z and n is a
nonnegative integer.
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For convenience, let I,,(7,b, c; z) be the right member of (7). We find
that, by using the following identity

g om=(9),(53),
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Recalling the generahzed binomial theorem
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we have
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We can then write I,,(v, b, ¢; ) as a double series as follows:
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which, upon applying one of the formal manipulations for double series:
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considering the following conventions:
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leads to
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Now using (5) and (6), we obtain

ZZ —k)j(y—b+n—k)i(y—ctn—k);

b
n(7b,62) = (n—2k+1); (y+n—k);j

k=0 37=0
) (1~ 7~ )i ()"
kl(n =2k (1—v+b-n)x(1—7+c—nk

[n/2]

Z r —k‘,’y—b+n—k,'y—c+n—k_1
o 372 n—2k+1,v+n—k '

y (1—v—n)(-2)*
Bl (n—2k)(1—y+b—n)s(1—v+c—n)’

which completes the proof of (7).

In order to consider a special case of (7), we first recall the Saalschiitz’s
theorem (see Rainville [1, p. 87]): If k is a nonnegative integer and if A,
B, C are independent of k, then

—k, A, B (C — A)y (C - B)
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Note that the identity (11) holds even though A, B, C are dependent of
k.

For an application of Saalschiitz’s theorem (11), let A = ¢+ n — k,
B=b+n—k,and C =n—2k+ 1, we find that
(A)

3Fy [

—k,c+n—kb+n—k |  (I—c—k(l-b—k)
n—2k+1L,b+c+n—k’ 7| (n-2k+Lp(l-b—c—n)

Setting v = b+ ¢ in the left member of (7) yields
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Setting (A) into (B) with the aid of the following identities:
1—a—k)=(-1)*()r and (n—2k)(n—2k+1);=(n—k),
we have

Y (B)k () (-1)* ="
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with which, setting ¥ = b + ¢ in the right member of (7), we obtain a
quadratic transformation identity for 3 F; :
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which is due to Whipple [2].
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