AN IDENTITY INVOLVING THE GENERALIZED HYPERGEOMETRIC SERIES

Young Joon Cho and Tae Young Seo

ABSTRACT. We provide a generalization of Whipple's quadratic transformation formula for ${}_3F_2$.

The generalized hypergeometric function with p numerator and q denominator parameters is defined by

$${}_{p}F_{q}\begin{bmatrix}\alpha_{1},\ldots,\alpha_{p}\\\beta_{1},\ldots,\beta_{q}\end{bmatrix} = {}_{p}F_{q}[\alpha_{1},\ldots,\alpha_{p};\beta_{1},\ldots,\beta_{q};z]$$

$$= \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}\cdots(\alpha_{p})_{n}}{(\beta_{1})_{n}\cdots(\beta_{q})_{n}} \frac{z^{n}}{n!},$$

where $(\alpha)_n$ denotes the Pochhammer symbol (or the shifted factorial) is defined by, α any complex number,

(1)
$$(\alpha)_n := \begin{cases} \alpha(\alpha+1)\dots(\alpha+n-1), & \text{if } n=1, 2, 3, \dots, \\ 1 & \text{if } n=0. \end{cases}$$

Using the fundamental property $\Gamma(z+1) = z\Gamma(z)$ of the Gamma function Γ , $(\alpha)_n$ can be written in the form

(2)
$$(\alpha)_n = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)},$$

Received December 7, 1998. Revised January 4, 1999.

¹⁹⁹¹ Mathematics Subject Classification: primary 33C20, secondary 33C10, 33C15.

Key words and phrases: hypergeometric series, Whipple's theorem, Saalschütz's theorem.

where Γ is the well-known Gamma function whose Weierstrass canonical product form is given by

(3)
$$\{\Gamma(z)\}^{-1} = ze^{\gamma z} \prod_{k=1}^{\infty} \left(1 + \frac{z}{k}\right) e^{-\frac{z}{k}},$$

 γ being the Euler-Mascheroni's constant defined by

(4)
$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \cong 0.577215664901532\dots.$$

From (1), we can easily deduce the following formula:

(5)
$$(\alpha)_{n-k} = \frac{(-1)^k (\alpha)_n}{(1-\alpha-n)_k} \quad (0 \le k \le n).$$

Setting $\alpha = 1$ in (5) gives the natural property

(6)
$$(-n)_k = \begin{cases} \frac{(-1)^k n!}{(n-k)!} & \text{if } 0 \le k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

In this note, a generalization of Whipple's quadratic transformation formula for ${}_3F_2$ is considered. Indeed, we obtain the following quadratic transformation formula:

where [x] denotes the greatest integer less than or equal to x and n is a nonnegative integer.

For convenience, let $I_n(\gamma, b, c; x)$ be the right member of (7). We find that, by using the following identity

(8)
$$(\alpha)_{2k} = 2^{2k} \left(\frac{\alpha}{2}\right)_k \left(\frac{\alpha}{2} + \frac{1}{2}\right)_k,$$

$$I_n(\gamma, b, c; x) = \frac{1}{n!} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-n)_{2k} (1 - \gamma - n)_k (-1)^k x^k (1 - x)^{n-2k}}{k! (1 - \gamma + b - n)_k (1 - \gamma + c - n)_k}.$$

Recalling the generalized binomial theorem

(9)
$$(1-z)^{-a} = \sum_{k=0}^{\infty} \frac{(a)_k}{k!} z^k \ (|z| < 1),$$

we have

$$(1-x)^{n-2k} = \sum_{j=0}^{n-2k} \frac{(2k-n)_j}{j!} x^j.$$

We can then write $I_n(\gamma, b, c; x)$ as a double series as follows:

$$I_n(\gamma, b, c; x) = \frac{1}{n!} \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{j=0}^{n-2k} \frac{(-n)_{2k} (1 - \gamma - n)_k (-1)^k (2k - n)_j x^{k+j}}{k! \, j! \, (1 - \gamma + b - n)_k (1 - \gamma + c - n)_k},$$

which, upon applying one of the formal manipulations for double series:

(10)
$$\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} A_{j,k} = \sum_{k=0}^{\infty} \sum_{j=0}^{k} A_{j,k-j}$$

considering the following conventions:

$$(-n)_{2k}=0 ext{ if } k\geq rac{n+1}{2}; \ \ (2k-n)_j=0 ext{ if } j\geq n-2k+1,$$

leads to

$$I_n(\gamma, b, c; x)$$

$$=\frac{1}{n!}\sum_{k=0}^{\infty}\sum_{j=0}^{k}\frac{(-n)_{2k-2j}(1-\gamma-n)_{k-j}(-1)^{k-j}(2k-2j-n)_{j}x^{k}}{(k-j)!\,j!\,(1-\gamma+b-n)_{k-j}(1-\gamma+c-n)_{k-j}}.$$

Now using (5) and (6), we obtain

$$I_{n}(\gamma,b,c;x) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{(-k)_{j} (\gamma - b + n - k)_{j} (\gamma - c + n - k)_{j}}{(n - 2k + 1)_{j} (\gamma + n - k)_{j} j!}$$

$$\times \frac{(1 - \gamma - n)_{k} (-x)^{k}}{k! (n - 2k)! (1 - \gamma + b - n)_{k} (1 - \gamma + c - n)_{k}}$$

$$= \sum_{k=0}^{[n/2]} {}_{3}F_{2} \begin{bmatrix} -k, \gamma - b + n - k, \gamma - c + n - k \\ n - 2k + 1, \gamma + n - k \end{bmatrix}; 1$$

$$\times \frac{(1 - \gamma - n)_{k} (-x)^{k}}{k! (n - 2k)! (1 - \gamma + b - n)_{k} (1 - \gamma + c - n)_{k}},$$

which completes the proof of (7).

In order to consider a special case of (7), we first recall the Saalschütz's theorem (see Rainville [1, p. 87]): If k is a nonnegative integer and if A, B, C are independent of k, then

(11)
$${}_{3}F_{2}\begin{bmatrix} -k, A, B \\ C, 1-C+A+B-k \end{bmatrix}; 1 = \frac{(C-A)_{k}(C-B)_{k}}{(C)_{k}(C-A-B)_{k}}.$$

Note that the identity (11) holds even though A, B, C are dependent of k.

For an application of Saalschütz's theorem (11), let A = c + n - k, B = b + n - k, and C = n - 2k + 1, we find that (A)

$$_3F_2\left[egin{array}{l} -k,\,c+n-k,\,b+n-k\ n-2k+1,\,b+c+n-k \end{array};\,1
ight] = rac{(1-c-k)_k\,(1-b-k)_k}{(n-2k+1)_k(1-b-c-n)_k}.$$

Setting $\gamma = b + c$ in the left member of (7) yields

(B)
$$I_{n}(b+c,b,c;x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {}_{3}F_{2} \begin{bmatrix} -k, c+n-k, b+n-k \\ n-2k+1, b+c+n-k \end{bmatrix}; 1 \end{bmatrix} \times \frac{(1-b-c-n)_{k}(-x)^{k}}{k! (n-2k)! (1-c-n)_{k} (1-b-n)_{k}}.$$

Setting (A) into (B) with the aid of the following identities:

$$(1-\alpha-k)_k = (-1)^k (\alpha)_k$$
 and $(n-2k)! (n-2k+1)_k = (n-k)!$

we have

$$I_n(b+c,b,c;x) = \sum_{k=0}^n \frac{(b)_k (c)_k (-1)^k x^k}{k! (n-k)! (1-c-n)_k (1-b-n)_k}$$
$$= \frac{1}{n!} {}_3F_2 \begin{bmatrix} -n, b, c \\ 1-b-n, 1-c-n \end{bmatrix}; x \end{bmatrix},$$

with which, setting $\gamma = b + c$ in the right member of (7), we obtain a quadratic transformation identity for ${}_3F_2$:

$${}_{3}F_{2}\begin{bmatrix} -n, b, c \\ 1-b-n, 1-c-n \end{bmatrix}; x$$

$$= (1-x)^{n} {}_{3}F_{2}\begin{bmatrix} -\frac{1}{2}n, -\frac{1}{2}n+\frac{1}{2}, 1-b-c-n \\ 1-b-n, 1-c-n \end{bmatrix}; \frac{-4x}{(1-x)^{2}},$$

which is due to Whipple [2].

ACKNOWLEDGMENTS. The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00022.

References

- [1] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
- [2] F. J. W. Whipple, Some transformations of generalized hypergeometric series, Proc. London Math. Soc. 26 (1927), no. 2, 257-272.

Department of Mathematics College of Natural Sciences Pusan National University Pusan 609-735, Korea

E-mail: tyseo@hyowon.pusan.ac.kr