• 제목/요약/키워드: SWIPT

검색결과 21건 처리시간 0.019초

MIMO 간섭채널에서 정보와 전력의 동시 전송 (SWIPT)을 위한 송수신기 설계 (Joint Transceiver Design for SWIPT in MIMO Interference Channel)

  • 서방원
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.55-62
    • /
    • 2019
  • 본 논문에서는 K 사용자 MIMO 간섭 채널을 고려하였으며, 정보와 전력을 동시에 전송하는 SWIPT 시스템을 위한 송수신기 설계 방법에 대해서 다룬다. 그리고, 정보 수신 장치와 전력 수확 장치가 같은 수신기에 존재하는 SWIPT 시스템을 고려한다. 제안하는 방식에서는 신호대 누수 잡음비 (SLNR)를 비용 함수로 사용하고, 수확 전력에 대한 임계값을 만족하도록 송수신기를 설계한다. 즉, 수확 전력에 대한 제약 조건 하에서, SLNR을 최대화시키도록 송신단 프리코딩 벡터, 수신단 검파기 벡터, 전력 분배 상수를 동시에 설계한다. 컴퓨터 모의실험을 통하여, 제안하는 기법과 기존 기법의 신호 대 간섭 잡음비 (SINR) 성능을 비교하였다. 사용자 수, 송신 안테나 개수, 수신 안테나 개수 간의 특별한 제약 조건을 만족하는 경우, 제안하는 기법은 낮은 SNR에서 기존 기법보다 우수한 SINR 성능을 나타낸다는 것을 보였다. 또한, 특별한 제약 조건을 만족하지 못하는 경우에는, 제안 기법이 모든 SNR 범위에 대해서 기존 기법보다 더 우수한 성능을 나타낸다는 것을 보였다.

Joint Beamforming and Power Splitting Design for Physical Layer Security in Cognitive SWIPT Decode-and-Forward Relay Networks

  • Xu, Xiaorong;Hu, Andi;Yao, Yingbiao;Feng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.1-19
    • /
    • 2020
  • In an underlay cognitive simultaneous wireless information and power transfer (SWIPT) network, communication from secondary user (SU) to secondary destination (SD) is accomplished with decode-and-forward (DF) relays. Multiple energy-constrained relays are assumed to harvest energy from SU via power splitting (PS) protocol and complete SU secure information transmission with beamforming. Hence, physical layer security (PLS) is investigated in cognitive SWIPT network. In order to interfere with eavesdropper and improve relay's energy efficiency, a destination-assisted jamming scheme is proposed. Namely, SD transmits artificial noise (AN) to interfere with eavesdropping, while jamming signal can also provide harvested energy to relays. Beamforming vector and power splitting ratio are jointly optimized with the objective of SU secrecy capacity maximization. We solve this non-convex optimization problem via a general two-stage procedure. Firstly, we obtain the optimal beamforming vector through semi-definite relaxation (SDR) method with a fixed power splitting ratio. Secondly, the best power splitting ratio can be obtained by one-dimensional search. We provide simulation results to verify the proposed solution. Simulation results show that the scheme achieves the maximum SD secrecy rate with appropriate selection of power splitting ratio, and the proposed scheme guarantees security in cognitive SWIPT networks.

Research on The SWIPT System Throughput Based on Interference Signal Energy Collecting

  • Jianxiong Li;Hailong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2170-2187
    • /
    • 2023
  • The general interference is the imperative trouble for simultaneous wireless information and power transfer (SWIPT) system. Although interference has bad influences on the performance of the system, it carries energy simultaneously. In this paper, the energy-constrained relay of the SWIPT system needs to spend much time on energy collecting (EC) in the information transmission (IT) period. Therefore, we propose the scheme of interference signal energy collecting (ISEC) when the interference is strong, and the SWIPT system does not carry out IT. The relay of the system continues to collect energy and stores it until the interference has minimal impact on IT. Then the system performs IT. We divide the collected interference energy equally into several parts, and each IT block receives one part. The proposed scheme is appealing because it can reduce the time of EC in IT period to make the relay spends more time forwarding the received signal in order to improve the performance of the system throughput. Furthermore, we propose a time-switching (TS) protocol based on EC at the relay. And it allows the relay forwarding signal at an appropriate power. Under the protocol, the time of EC can be flexible according to the forwarding power that we give so that the collected energy can be used more efficiently. We give the expressions of the system throughput according to the proposed scheme and protocol. Moreover, the influence of the interference power on the system throughput is also studied.

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

Simultaneous Wireless Information and Power Transfer in Two-hop OFDM Decode-and-Forward Relay Networks

  • Di, Xiaofei;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.152-167
    • /
    • 2016
  • This paper investigates the simultaneous wireless information and power transfer (SWIPT) for two-hop orthogonal frequency division multiplexing (OFDM) decode-and-forward (DF) relay network, where a relay harvests energy from radio frequency signals transmitted by a source and then uses the harvested energy to assist information transmission from the source to its destination. The power splitting receiver is considered at the relay. To explore the performance limit of such a SWIPT-enabled system, a resource allocation (RA) optimization problem is formulated to maximize the achievable information rate of the system, where the power allocation, the subcarrier pairing and the power splitting factor are jointly optimized. As the problem is non-convex and there is no known solution method, we first decompose it into two separate subproblems and then design an efficient RA algorithm. Simulation results demonstrate that our proposed algorithm can achieve the maximum achievable rate of the system and also show that to achieve a better system performance, the relay node should be deployed near the source in the SWIPT-enabled two-hop OFDM DF relay system, which is very different from that in conventional non-SWIPT system where the relay should be deployed at the midpoint of the line between the source and the destination.

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks

  • Asiedu, Derek Kwaku Pobi;Shin, Suho;Koumadi, Koudjo M.;Lee, Kyoung-Jae
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.105-116
    • /
    • 2019
  • Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.

Energy-efficiency Optimization Schemes Based on SWIPT in Distributed Antenna Systems

  • Xu, Weiye;Chu, Junya;Yu, Xiangbin;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.673-694
    • /
    • 2021
  • In this paper, we intend to study the energy efficiency (EE) optimization for a simultaneous wireless information and power transfer (SWIPT)-based distributed antenna system (DAS). Firstly, a DAS-SWIPT model is formulated, whose goal is to maximize the EE of the system. Next, we propose an optimal resource allocation method by means of the Karush-Kuhn-Tucker condition as well as an ergodic method. Considering the complexity of the ergodic method, a suboptimal scheme with lower complexity is proposed by using an antenna selection scheme. Numerical results illustrate that our suboptimal method is able to achieve satisfactory performance of EE similar to an optimal one while reducing the calculation complexity.

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.

동시 무선 정보 및 전력 전송을 위한 통합된 수신기 구조 기반의 새로운 검출 기법 (Novel Detection Schemes Based on the Unified Receiver Architecture for SWIPT)

  • 강진호;김영빈;신대규;최완
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.268-278
    • /
    • 2017
  • 본 논문에서는 동시 무선 정보 및 전력 전송 시스템에서 전송률-에너지 영역 관점에서의 근본적인 트레이드오프를 최소화하기 위해 제안되었던 새로운 수신기 구조를 기반으로 복잡도가 낮은 새로운 검출 기법들을 제안한다. 첫 번째로 에너지 하베스팅을 위한 정류된 신호로부터 얻을 수 있는 진폭 정보를 통해 유클리드 거리 기반으로 부호의 진폭을 먼저 검출한 후 기존의 정보 복호화 과정에서 얻을 수 있는 위상 정보를 통해 유클리드 거리를 기반으로 최종 부호를 검출하는 이단 검출 기법을 제안한다. 두 번째로 기존의 정보 복호화 과정을 통해 얻을 수 있는 진폭과 위상 정보를 포함한 유클리드 거리와 에너지 하베스팅을 위한 정류된 신호로부터 얻을 수 있는 진폭정보를 포함한 유클리드 거리를 결합하여 부호를 검출 할 수 있는 유클리드 거리 결합 검출 기법을 제시한다. 모의실험을 통해 부호 에러율과 부호 성공률-에너지 영역, 달성 가능한 전송률-에너지 영역 측면에서 기존의 정보 복호화 기법보다 우수한 성능을 얻음을 확인하였다.

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.