Browse > Article
http://dx.doi.org/10.6109/jicce.2019.17.2.105

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks  

Asiedu, Derek Kwaku Pobi (Department of Electronics and Control Engineering, Hanbat National University)
Shin, Suho (Department of Electronics and Control Engineering, Hanbat National University)
Koumadi, Koudjo M. (Information and Engineering Technology Department, Prince George's Collage)
Lee, Kyoung-Jae (Department of Electronics and Control Engineering, Hanbat National University)
Abstract
Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.
Keywords
Cooperative sensor networks; Energy harvesting (EH); Simultaneous wireless information and power transfer (SWIPT); Wireless power transfer (WPT); Wireless sensor network (WSN);
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Malik and M. Vu, "Optimal transmission using a self-sustained relay in a full-duplex MIMO system," IEEE Journal on Selected Areas in Communications, vol. 37, no. 2, pp. 374-390, 2019. DOI: 10.1109/JSAC.2018.2872617.   DOI
2 L. Mohjazi, S. Muhaidat, M. Dianati, M. Al-Qutayri, and N. Al-Dhahir, "Performance analysis of SWIPT relaying systems in the presence of impulsive noise," IEEE Access, vol. 6, pp. 71662-71677, 2018. DOI:10.1109/ACCESS.2018.2882060.   DOI
3 E. Chen, M. Xia, D. B. da Costa, and S. Aïssa, "Multi-hop cooperative relaying with energy harvesting from cochannel interferences," IEEE Communications Letters, vol. 21, no. 5, pp. 1199-1202, 2019. DOI: 10.1109/LCOMM.2017.2655039.   DOI
4 M. Mao, N. Cao, Y. Chen, and Y. Zhou, "Multi-hop relaying using energy harvesting," IEEE Wireless Communications Letters, vol. 4, no. 5, pp. 565-568, 2015. DOI:10.1109/LWC.2015.2462346.   DOI
5 X. Liu, Z. Wen, D. Liu, J. Zou, and S. Li, "Joint source and relay beamforming design in wireless multi-hop sensor networks with SWIPT," Sensors, vol. 19, no. 1, p. 1-12, 2019. DOI:10.3390/s19010182.   DOI
6 R. Fan, S. Atapattu, W. Chen, Y. Zhang, and J. Evans, "Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting," IEEE Access, vol. 6, pp. 24582-24595, 2018. DOI:10.1109/ACCESS.2018.2831253.   DOI
7 C. S. Raghavendra, K. M. Sivalingam, and A. T. Znati, Wireless Sensor Networks, New York: Springer, 2006.
8 J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug 2008. DOI:10.1016/j.commet.2008.04.002.   DOI
9 A. Sarkar and T. S. Murugan, "Routing protocols for wireless sensor networks: What the literature says?," Alexandria Engineering Journal, vol. 55, no. 4, pp. 3173-3183, 2016. DOI:10.1016/j.aej.2016.08.003.   DOI
10 N. Sabor, S. Sasaki, M. Abo-Zahhad, and S. M. Ahmed, "A comprehensive survey on hierarchical-based routing protocols for mobile wireless sensor networks: review, taxonomy, and future directions," Wireless Communications and Mobile Computing, pp 1-23, 2017. DOI:10.1155/2017/2818542.   DOI
11 S. Cui, A. J. Goldsmith, and A. Bahai, "Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks," IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1089-1098, 2004. DOI:10.1109/JSAC.2004.830916.   DOI
12 S. H. Lee and S. Y. Chung, "When is compress-and-forward optimal?" in IEEE Information Theory and Applications Workshop (ITA), San Diego: CA, pp 1-3, 2010. DOI:10.1109/ITA.2010.5454140.
13 H. Yetgin, K. T. Cheung, M. El-Hajjar, and L. H. Hanzo, "A survey of network lifetime maximization techniques in wireless sensor networks," IEEE Communications Surveys and Tutorials, vol. 19, no. 2, pp. 828-854, 2017. DOI:10.1109/COMST.2017.2650979.   DOI
14 M. Rizinski and V. Kafedziski, "Outage probability of AF, DF and CF cooperative strategies for the slow fading relay channel," in Proceeding of IEEE 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis: Serbia, pp. 609-612, 2013. DOI:10.1109/TELSKS.2013.6704452.
15 F. Gao, T. Cui, and A. Nallanathan, "On channel estimation and optimal training design for amplify and forward relay networks," IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 1907-1916, 2008. DOI:10.1109/TWC.2008.070118.   DOI
16 M. Safari and M. Uysal, "Relay-assisted free-space optical communication," IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 5441-5449, 2008. DOI:10.1109/ACSSC.2007.4487565.   DOI
17 C. Song, K.-J. Lee, and I. Lee, "Designs of MIMO amplify-and-forward wireless relaying networks: Practical challenges and solutions based on MSE decomposition," IEEE Access, vol. 5, pp. 9223-9234, 2017. DOI:10.1109/ACCESS.2017.2703125.   DOI
18 Z Bai, J. Jia, C. X. Wang and D. Yuan, "Performance analysis of SNR-based incremental hybrid decode-amplify-forward cooperative relaying protocol," IEEE Transactions on Communications, vol. 63, no. 6, pp. 2094-2106, 2015. DOI:10.1109/TCOMM.2015.2427166.   DOI
19 D. E. Simmons and J. P. Coon, "Two-way OFDM-based nonlinear amplify-and-forward relay systems," IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 3808-3812, 2016. DOI:10.1109/TVT.2015.2436713.   DOI
20 W. Guo, S. Zhou, Y. Chen, S. Wang, X. Chu, and Z. Niu, "Simultaneous information and energy flow for IoT relay systems with crowd harvesting," IEEE Communications Magazine, vol. 54, no. 11, pp. 143-149, 2016. DOI:10.1109/MCOM.2016.1500649CM.   DOI
21 X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys and Tutorials, vol. 17, no. 2, pp. 757-789, 2015. DOI:10.1109/COMST.2014.2368999.   DOI
22 S. Bi, C. K. Ho, and R. Zhang, "Wireless powered communication: Opportunities and challenges," IEEE Communications Magazine, vol. 53, no. 4, pp. 117-125, 2015. DOI:10.1109/MCOM.2015.7081084.   DOI
23 M. Sumaila, D. K. Asiedu, and K.-J. Lee, "Simultaneous wireless information and power transfer for cooperative relay networks with battery," IEEE Access, vol. 5, pp. 13171-13178, 2017. DOI:10.1109/ACCESS.2017.2724638.   DOI
24 R. Zhang and C. K. Ho, "MIMO broadcasting for simultaneous wireless information and power transfer," IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989-2001, 2013. DOI: 10.1109/TWC.2013.031813.120224.   DOI
25 X. Chen, Z. Zhang, H. H. Chen, and Zhang, "Enhancing wireless information and power transfer by exploiting multi-antenna techniques," IEEE Communications Magazine, vol. 53, no. 4, pp. 133-141, 2015. DOI:10.1109/MCOM.2015.7081086.   DOI
26 X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757-789, 2014. DOI:10.1109/MCOM.2014.2368999.   DOI
27 K. Huang and X. Zhou, "Cutting the last wires for mobile communications by microwave power transfer," IEEE Communications Magazine, vol. 53, no. 6, pp. 86-93, 2015. DOI:10.1109/MCOM.2015.7120022.   DOI
28 D. K. Asiedu, S. Mahama, S. W. Jeon, and K.-J. Lee, "Optimal power splitting for simultaneous wireless information and power transfer in amplify-and-forward multiple-relay systems," IEEE Access, vol. 6, pp. 3459-3468, 2018. DOI:10.1109/ACCESS.2017.2772033.   DOI
29 H. Lee, K.-J. Lee, H. B. Kong, and I. Lee, "Sum-rate maximization for multiuser MIMO wireless powered communication networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 11, pp. 9420-9424, 2016. DOI:10.1109/TVT.2016.2515607.   DOI
30 H. Lee, K.-J. Lee, H. Kim, and I. Lee, "Joint transceiver optimization for MISO SWIPT systems with time switching," IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 3298-3312, 2018. DOI:10.1109/TWC.2018.2809734.   DOI
31 S. Yin, Z. Qu, Z. Wang, and L. Li, "Energy-efficient cooperation in cognitive wireless powered networks," IEEE Communications Letters, vol. 21, no. 1, pp. 128-131, 2017. DOI:10.1109/LCOMM.2016.2613537.   DOI
32 B. Clerckx, R. Zhang, R. Schober, D. W. Ng, D. I. Kim, and H. V. Poor, "Fundamentals of wireless information and power transfer: from RF energy harvester models to signal and system designs," IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 4-33, 2019. DOI:10.1109/JSAC.2018.2872615.   DOI
33 M. A. Hossain, R. M. Noor, K. L. Yau, I. Ahmedy, and S. S. A. Anjum, "Survey on simultaneous wireless information and power transfer with cooperative relay and future challenges," IEEE Access, vol. 7, pp. 19166-19198, 2019. DOI:10.1109/ACCESS.2019.2895645.   DOI
34 R. Chen, Y. Sun, Y. Chen, X. Zhang, S. Li, and Z. Sun, "Energy efficiency analysis of bidirectional wireless information and power transfer for cooperative sensor networks," IEEE Access, vol. 7, pp. 4905-4912, 2018. DOI:10.1109/ACCESS.2018.2888694.   DOI
35 W. Lu, W. Zhao, S. Hu, X. Liu, B. Li, and Y. Gong, "OFDM based SWIPT for two-way AF relaying network," IEEE Access, vol. 6, pp. 73223-73231, 2018. DOI:10.1109/ACCESS.2018.2882196.   DOI
36 Y. Liu, "Joint resource allocation in SWIPT-based multiantenna decode-and-forward relay networks," IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 9192-9200, 2017. DOI:10.1109/TVT.2017.2717018.   DOI