DOI QR코드

DOI QR Code

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks

  • Asiedu, Derek Kwaku Pobi (Department of Electronics and Control Engineering, Hanbat National University) ;
  • Shin, Suho (Department of Electronics and Control Engineering, Hanbat National University) ;
  • Koumadi, Koudjo M. (Information and Engineering Technology Department, Prince George's Collage) ;
  • Lee, Kyoung-Jae (Department of Electronics and Control Engineering, Hanbat National University)
  • Received : 2019.04.29
  • Accepted : 2019.05.30
  • Published : 2019.06.30

Abstract

Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.

Keywords

E1ICAW_2019_v17n2_105_f0001.png 이미지

Fig. 1. Wireless sensor network consisting of sensor nodes, gateway, and wired central systems.

E1ICAW_2019_v17n2_105_f0002.png 이미지

Fig. 2. Wireless sensor network topologies.

E1ICAW_2019_v17n2_105_f0003.png 이미지

Fig. 3. DL and UL rate trade-off curves for a SISO and SIMO P2P communi-cation system.

E1ICAW_2019_v17n2_105_f0004.png 이미지

Fig. 4. Types of relaying configuration.

E1ICAW_2019_v17n2_105_f0005.png 이미지

Fig. 5. WPT schemes.

E1ICAW_2019_v17n2_105_f0006.png 이미지

Fig. 6. SWIPT antenna configurations.

E1ICAW_2019_v17n2_105_f0007.png 이미지

Fig. 7. Rate against source transmit power.

E1ICAW_2019_v17n2_105_f0008.png 이미지

Fig. 8. Rate against increasing number of relay nodes.

Table 1. Summary of review papers

E1ICAW_2019_v17n2_105_t0001.png 이미지

Table 2. Summary of dual-hop SWIPT research

E1ICAW_2019_v17n2_105_t0002.png 이미지

Table 3. Summary of Parallel Multi-hop papers reviewed

E1ICAW_2019_v17n2_105_t0003.png 이미지

Table 4. Summary of Serial Multi-hop papers reviewed

E1ICAW_2019_v17n2_105_t0004.png 이미지

References

  1. C. S. Raghavendra, K. M. Sivalingam, and A. T. Znati, Wireless Sensor Networks, New York: Springer, 2006.
  2. J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug 2008. DOI:10.1016/j.commet.2008.04.002.
  3. N. Sabor, S. Sasaki, M. Abo-Zahhad, and S. M. Ahmed, "A comprehensive survey on hierarchical-based routing protocols for mobile wireless sensor networks: review, taxonomy, and future directions," Wireless Communications and Mobile Computing, pp 1-23, 2017. DOI:10.1155/2017/2818542.
  4. A. Sarkar and T. S. Murugan, "Routing protocols for wireless sensor networks: What the literature says?," Alexandria Engineering Journal, vol. 55, no. 4, pp. 3173-3183, 2016. DOI:10.1016/j.aej.2016.08.003.
  5. S. Cui, A. J. Goldsmith, and A. Bahai, "Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks," IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1089-1098, 2004. DOI:10.1109/JSAC.2004.830916.
  6. H. Yetgin, K. T. Cheung, M. El-Hajjar, and L. H. Hanzo, "A survey of network lifetime maximization techniques in wireless sensor networks," IEEE Communications Surveys and Tutorials, vol. 19, no. 2, pp. 828-854, 2017. DOI:10.1109/COMST.2017.2650979.
  7. M. Rizinski and V. Kafedziski, "Outage probability of AF, DF and CF cooperative strategies for the slow fading relay channel," in Proceeding of IEEE 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis: Serbia, pp. 609-612, 2013. DOI:10.1109/TELSKS.2013.6704452.
  8. F. Gao, T. Cui, and A. Nallanathan, "On channel estimation and optimal training design for amplify and forward relay networks," IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 1907-1916, 2008. DOI:10.1109/TWC.2008.070118.
  9. S. H. Lee and S. Y. Chung, "When is compress-and-forward optimal?" in IEEE Information Theory and Applications Workshop (ITA), San Diego: CA, pp 1-3, 2010. DOI:10.1109/ITA.2010.5454140.
  10. M. Safari and M. Uysal, "Relay-assisted free-space optical communication," IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 5441-5449, 2008. DOI:10.1109/ACSSC.2007.4487565.
  11. Z Bai, J. Jia, C. X. Wang and D. Yuan, "Performance analysis of SNR-based incremental hybrid decode-amplify-forward cooperative relaying protocol," IEEE Transactions on Communications, vol. 63, no. 6, pp. 2094-2106, 2015. DOI:10.1109/TCOMM.2015.2427166.
  12. D. E. Simmons and J. P. Coon, "Two-way OFDM-based nonlinear amplify-and-forward relay systems," IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 3808-3812, 2016. DOI:10.1109/TVT.2015.2436713.
  13. W. Guo, S. Zhou, Y. Chen, S. Wang, X. Chu, and Z. Niu, "Simultaneous information and energy flow for IoT relay systems with crowd harvesting," IEEE Communications Magazine, vol. 54, no. 11, pp. 143-149, 2016. DOI:10.1109/MCOM.2016.1500649CM.
  14. C. Song, K.-J. Lee, and I. Lee, "Designs of MIMO amplify-and-forward wireless relaying networks: Practical challenges and solutions based on MSE decomposition," IEEE Access, vol. 5, pp. 9223-9234, 2017. DOI:10.1109/ACCESS.2017.2703125.
  15. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys and Tutorials, vol. 17, no. 2, pp. 757-789, 2015. DOI:10.1109/COMST.2014.2368999.
  16. S. Bi, C. K. Ho, and R. Zhang, "Wireless powered communication: Opportunities and challenges," IEEE Communications Magazine, vol. 53, no. 4, pp. 117-125, 2015. DOI:10.1109/MCOM.2015.7081084.
  17. M. Sumaila, D. K. Asiedu, and K.-J. Lee, "Simultaneous wireless information and power transfer for cooperative relay networks with battery," IEEE Access, vol. 5, pp. 13171-13178, 2017. DOI:10.1109/ACCESS.2017.2724638.
  18. R. Zhang and C. K. Ho, "MIMO broadcasting for simultaneous wireless information and power transfer," IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989-2001, 2013. DOI: 10.1109/TWC.2013.031813.120224.
  19. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757-789, 2014. DOI:10.1109/MCOM.2014.2368999.
  20. K. Huang and X. Zhou, "Cutting the last wires for mobile communications by microwave power transfer," IEEE Communications Magazine, vol. 53, no. 6, pp. 86-93, 2015. DOI:10.1109/MCOM.2015.7120022.
  21. D. K. Asiedu, S. Mahama, S. W. Jeon, and K.-J. Lee, "Optimal power splitting for simultaneous wireless information and power transfer in amplify-and-forward multiple-relay systems," IEEE Access, vol. 6, pp. 3459-3468, 2018. DOI:10.1109/ACCESS.2017.2772033.
  22. X. Chen, Z. Zhang, H. H. Chen, and Zhang, "Enhancing wireless information and power transfer by exploiting multi-antenna techniques," IEEE Communications Magazine, vol. 53, no. 4, pp. 133-141, 2015. DOI:10.1109/MCOM.2015.7081086.
  23. H. Lee, K.-J. Lee, H. Kim, and I. Lee, "Joint transceiver optimization for MISO SWIPT systems with time switching," IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 3298-3312, 2018. DOI:10.1109/TWC.2018.2809734.
  24. H. Lee, K.-J. Lee, H. B. Kong, and I. Lee, "Sum-rate maximization for multiuser MIMO wireless powered communication networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 11, pp. 9420-9424, 2016. DOI:10.1109/TVT.2016.2515607.
  25. S. Yin, Z. Qu, Z. Wang, and L. Li, "Energy-efficient cooperation in cognitive wireless powered networks," IEEE Communications Letters, vol. 21, no. 1, pp. 128-131, 2017. DOI:10.1109/LCOMM.2016.2613537.
  26. B. Clerckx, R. Zhang, R. Schober, D. W. Ng, D. I. Kim, and H. V. Poor, "Fundamentals of wireless information and power transfer: from RF energy harvester models to signal and system designs," IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 4-33, 2019. DOI:10.1109/JSAC.2018.2872615.
  27. M. A. Hossain, R. M. Noor, K. L. Yau, I. Ahmedy, and S. S. A. Anjum, "Survey on simultaneous wireless information and power transfer with cooperative relay and future challenges," IEEE Access, vol. 7, pp. 19166-19198, 2019. DOI:10.1109/ACCESS.2019.2895645.
  28. R. Chen, Y. Sun, Y. Chen, X. Zhang, S. Li, and Z. Sun, "Energy efficiency analysis of bidirectional wireless information and power transfer for cooperative sensor networks," IEEE Access, vol. 7, pp. 4905-4912, 2018. DOI:10.1109/ACCESS.2018.2888694.
  29. W. Lu, W. Zhao, S. Hu, X. Liu, B. Li, and Y. Gong, "OFDM based SWIPT for two-way AF relaying network," IEEE Access, vol. 6, pp. 73223-73231, 2018. DOI:10.1109/ACCESS.2018.2882196.
  30. Y. Liu, "Joint resource allocation in SWIPT-based multiantenna decode-and-forward relay networks," IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 9192-9200, 2017. DOI:10.1109/TVT.2017.2717018.
  31. R. Malik and M. Vu, "Optimal transmission using a self-sustained relay in a full-duplex MIMO system," IEEE Journal on Selected Areas in Communications, vol. 37, no. 2, pp. 374-390, 2019. DOI: 10.1109/JSAC.2018.2872617.
  32. L. Mohjazi, S. Muhaidat, M. Dianati, M. Al-Qutayri, and N. Al-Dhahir, "Performance analysis of SWIPT relaying systems in the presence of impulsive noise," IEEE Access, vol. 6, pp. 71662-71677, 2018. DOI:10.1109/ACCESS.2018.2882060.
  33. E. Chen, M. Xia, D. B. da Costa, and S. Aïssa, "Multi-hop cooperative relaying with energy harvesting from cochannel interferences," IEEE Communications Letters, vol. 21, no. 5, pp. 1199-1202, 2019. DOI: 10.1109/LCOMM.2017.2655039.
  34. M. Mao, N. Cao, Y. Chen, and Y. Zhou, "Multi-hop relaying using energy harvesting," IEEE Wireless Communications Letters, vol. 4, no. 5, pp. 565-568, 2015. DOI:10.1109/LWC.2015.2462346.
  35. X. Liu, Z. Wen, D. Liu, J. Zou, and S. Li, "Joint source and relay beamforming design in wireless multi-hop sensor networks with SWIPT," Sensors, vol. 19, no. 1, p. 1-12, 2019. DOI:10.3390/s19010182.
  36. R. Fan, S. Atapattu, W. Chen, Y. Zhang, and J. Evans, "Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting," IEEE Access, vol. 6, pp. 24582-24595, 2018. DOI:10.1109/ACCESS.2018.2831253.