• Title/Summary/Keyword: SWING ERRORS

Search Result 20, Processing Time 0.018 seconds

A Study of Golf Swing Errors of Amateur Golfer (아마추어골퍼들의 스윙 오류에 관한 연구)

  • Lim, Jung;Jeon, Chul-Woo;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golfer lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golfer coaching methods. For this purpose, kinetic elements were divided into precision and power ones and therewith, the variables affecting such elements were identified. On the other hand, swings were divided into address, take-back, back-swing, back-swing top, down-swing, impact and follow-through to determine 20 variables for each form and thereby, define their errors to determine the relations between their frequency and errors. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The results of this study can be summarized as follows; The kinetic elements could be identified as precision, power and precise power. Thus, setup and trajectory were classified into precision elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into precise power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (7) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

Kinetic Classification of Golf Swing Error (골프스윙오류의 운동역학적 분류)

  • Jeon, Chul-Woo;Hwang, In-Weong;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.95-103
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golf lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golf coaching methods. For this purpose, kinetic elements were divided into accuracy and power ones and therewith, the variables affecting such elements were identified. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The kinetic elements could be identified as accuracy, power and accuracy & power. Thus, setup and trajectory were classified into accuracy elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into accuracy & power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (6) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

The Application of Qualitative Evaluation for Golf Swills field Lesson (골프스윙 현장지도를 위한 정성적 평가 적용)

  • Yu, Seung-Won
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.323-336
    • /
    • 2009
  • The purpose of the current study was to research scientific basis and necessity of supplementary materials for field lesson out of golf swing teaching methods. As the subject of study, skillful tour pro golfers were chosen to reinterpret field lesson results for driver swing from the viewpoint of kinematics. In addition, through precise analysis, this study developed a case to verify the validity and error of field lesson. As a result, field lesson showed a slight difference among qualitative evaluation of kinematical analysis of techniques, subjects of study, and items. Accordingly, there was a little difference between two methods in view of evaluation of errors that 5 subjects of the study have shown. However, there was a significant difference in compensation to prevent causes of error and errors. Based on instructor's experience most errors could be evaluated. Therefore, feedback for error correction based on instructor's experience showed a significant difference from qualitative evaluation of kinematical analysis of techniques. In conclusion, the following are required for correct golf swing lesson; instant feedback through field lesson and qualitative evaluation of kinematical analysis of techniques to determine fundamental causes correctly.

Swing Trajectory Optimization of Legged Robot by Real-Time Nonlinear Programming (실시간 비선형 최적화 알고리즘을 이용한 족형 로봇의 Swing 궤적 최적화 방법)

  • Park, Kyeongduk;Choi, Jungsu;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1193-1200
    • /
    • 2015
  • An effective swing trajectory of legged robots is different from the swing trajectories of humans or animals because of different dynamic characteristics. Therefore, it is important to find optimal parameters through experiments. This paper proposes a real-time nonlinear programming (RTNLP) method for optimization of the swing trajectory of the legged robot. For parameterization of the trajectory, the swing trajectory is approximated to parabolic and cubic spline curves. The robotic leg is position-controlled by a high-gain controller, and a cost function is selected such that the sum of the motor inputs and tracking errors at each joint is minimized. A simplified dynamic model is used to simulate the dynamics of a robotic leg. The purpose of the simulation is to find the feasibility of the optimization problem before an actual experiment occurs. Finally, an experiment is carried out on a real robotic leg with two degrees of freedom. For both the simulation and the experiment, the design variables converge to a feasible point, reducing the cost value.

An Optimal Control of the Crane System Using a Genetic Algorithm (유전알고리즘을 이용한 크레인 시스템의 최적제어)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.498-504
    • /
    • 1998
  • This paper presents an optimal control algorithm for the overhead crane. To control the swing motion and the position tracking of the payload of the overhead crane a state feedback control algorithm is applied. by using a hybrid genetic algorithm the feedback gains of the state feedback is optimized to minimize the cost function composed of position errors and payload swing angle under unknown constant disturbances. Computer simulation is performed to demonstrate the effectiveness of the proposed control algorithm.

  • PDF

Anti-Swing Control Algorithm for the Automation of Overhead Crane (천정크레인 설비의 자동화를 위한 반진동 제어 알고리즘)

  • 배상욱;노철균;배영호;이득기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2003
  • In this paper, is proposed an anti-swing control algorithm for the automation of overhead crane. The algorithm consists of three parts, the FCL with compensatory FLC which generates acceleration, velocity and position reference to reduce swing angle and acceleration feedback controller which feedback control errors. Especially the algorithm dose not need angular sensor which detect swing angle of payload and requires high cost. By the simulation study and experiment with prototype crane, we showed the usefulness of the proposed algorithm.

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Golf Swing Classification Using Fuzzy System (퍼지 시스템을 이용한 골프 스윙 분류)

  • Park, Junwook;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.380-392
    • /
    • 2013
  • A method to classify a golf swing motion into 7 sections using a Kinect sensor and a fuzzy system is proposed. The inputs to the fuzzy logic are the positions of golf club and its head, which are extracted from the information of golfer's joint position and color information obtained by a Kinect sensor. The proposed method consists of three modules: one for extracting the joint's information, another for detecting and tracking of a golf club, and the other for classifying golf swing motions. The first module extracts the hand's position among the joint information provided by a Kinect sensor. The second module detects the golf club as well as its head with the Hough line transform based on the hand's coordinate. Using a fuzzy logic as a classification engine reduces recognition errors and, consequently, improves the performance of robust classification. From the experiments of real-time video clips, the proposed method shows the reliability of classification by 85.2%.

A Study on Mechanism Stated Number of Electro-Optical Distance Measuring Instrument (광파측거의의 기계정수에 관한 연구)

  • Lee, Y.H.;Mun, D.Y.
    • Journal of Korean Port Research
    • /
    • v.5 no.2
    • /
    • pp.77-84
    • /
    • 1991
  • This paper is compared with fourier series and least square polynomial fit and interpolation to mechanism stated number in electro-optical distance measuring instrument. Systematic instrumental errors occurring in electro-optical systems include uncertainties in the position of the electrical center of the transmitter, uncertainties in the effective center of the reflectors. frequency drift and instrument nonlinearity. Microwave systems are affected by uncertainties in the electrical centers of the master and remote units and by a phenomenon called group swing or reflection. As the result of this study, mechanism stated number will be used as verification of electro0optical measuring instrument to distance measurement.

  • PDF

A CMOS LC VCO with Differential Second Harmonic Output (차동 이차 고조파 출력을 갖는 CMOS LC 전압조정발진기)

  • Kim, Hyun;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.60-68
    • /
    • 2007
  • A technique is presented to extract differential second harmonic output from common source nodes of a cross-coupled P-& N-FET oscillator. Provided the impedances at the common source nodes are optimized and the fundamental swing at the VCO core stays in a proper mode, it is found that the amplitude and phase errors can be kept within $0{\sim}1.6dB$ and $+2.2^{\circ}{\sim}-5.6^{\circ}$, respectively, over all process/temperature/voltage corners. Moreover, an impedance-tuning circuit is proposed to compensate any unexpectedly high errors on the differential signal output. A Prototype 5-GHz VCO with a 2.5-Hz LC resonator is implemented in $0.18-{\mu}m$ CMOS. The error signal between the differential outputs has been measured to be as low as -70 dBm with the aid of the tuning circuit. It implies the push-push outputs are satisfactorily differential with the amplitude and phase errors well less than 0.34 dB and $1^{\circ}$, respectively.