• Title/Summary/Keyword: SWCNT

Search Result 117, Processing Time 0.027 seconds

Characterization of SWCNT Field Effect Transistor via Edison Simulation

  • Piao, Mingxing;Lee, Sang-Jin;Na, In-Yeob
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.260-263
    • /
    • 2013
  • A semiconducting single-walled carbon nanotube (SWCNT) field-effect transistor (FET) in a top-gate model was constructed. The effect of different high-${\kappa}$ dielectric materials ($Al_2O_3$, $HfO_2$ and HfSiON) and various temperatures with a wide range from 50K to 500K on the performance of such nominal device were investigated. Several key device parameters including the on/off ratio of the current, transconductance ($g_m$), subthreshold swing, and carrier mobility were used to evaluate the device performance. The simulated results fit well with the experiment results previously published.

  • PDF

Study on Electro spinning Voltage and Strength Characteristics Using Agitation Solution (SWCNT 0.1% -PAN 3% -DMF 17%) (SWCNT 0.1%-PAN 3%-DMF 17% 교반용액을 활용한 전기방사 전압 및 강도특성연구)

  • Lee, Jongyeob;Bae, Sangdae;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.290-295
    • /
    • 2020
  • In this study, Electro spinning was carried out using Cabon nanotube 0.1%-Polyacrylonitrile 3%-Dimethylformamide 17% agitation solution. It was investigated the solute and solvent correlations according to the electro spinning voltages ranging form 5 to 40 kV, based on the SEM image. Except voltage 25 kV, electro spinning was failed due to the lack of electro spinning (less than 60%). Voltage 25 kV was showed excellent properties, and was confirmed Cabon nanotube 58.1 nm and diameter of Cabon nanotube + Polyacrylonitrile 1.76 ㎛ as shown SEM image. Also, the tensile test results were showed that SK Chemical prepreg electro spinning angle of 0 and 90 degrees were 137 MPa and 60 MPa, respectively.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects

  • Ouakad, Hassen M.;Sedighi, Hamid M.;Al-Qahtani, Hussain M.
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.

Removal of Natural Organic Matter (NOM) by Carbon Nanotubes Modified PVDF Membrane (탄소나노튜브(CNT)-PVDF 막을 이용한 자연용존유기물 제거)

  • Cho, Hyun-Hee;Cha, Min-Whan;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.148-156
    • /
    • 2012
  • In this research, the application of carbon nanotubes (CNTs) modified PVDF (polyvinylidene fluoride) membrane was tested as a simply and beginning attempt to overcome membrane fouling because CNTs importantly affect the transport of natural organic matter (NOM). Suwannee River fulvic acid (SRFA) as the representative of NOM was selected and its sorption results with single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and oxidized MWCNT (O-MWCNT) were obtained through the batch experiment. SRFA sorption isotherms had a strong nonlinearity and its sorption capacity followed the order O-MWCNT < MWCNT < SWCNT. The adsorbed mass of SRFA on each CNT decreased as a function of pH due to their charge repulsion. For the CNT-PVDF membrane filtration experiments, the suspended CNT solution (10 mg/40 mL) was incorporated into $0.45{\mu}m$-PVDF membrane and 5 mg/L of SRFA solution was monitored using UV detector connected with high pressure pump after passing through CNT-PVDF membrane. The SRFA removal efficiency by MWCNT-PVDF membrane was the strongest among other modified membranes. This suggests that the CNT modified microfiltration (MF) membrane might effectively and selectively apply to treat the contaminated water including organic compounds in the presence of NOM.

Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium

  • Barzoki, Ali Akbar Mosallaie;Loghman, Abbas;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.497-517
    • /
    • 2015
  • In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size effects of microplate are considered based on Eringen's nonlocal theory. Based on orthotropic Mindlin plate theory along with von K$\acute{a}$rm$\acute{a}$n geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the buckling load.

Solution Processed Single Walled Carbon Nanotubes Transparent Conducting Films (투명전도막을 위한 용해 처리된 단일막 탄소나노튜브)

  • Manivannan, S.;Jeong, Il-Ok;Ryu, Je-Hwang;Jang, Jin;Park, Kyu-Chang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.45-45
    • /
    • 2008
  • In recent years, new materials and technology has been developed using single-walled carbon nanotubes (SWCNTs) as an alternative to indium tin oxide (ITO) to fulfil the requirements towards novel technological drive. These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. In addition, SWCNTs can be solution processed to replace the sophisticated vacuum techniques at high temperatures. In the present work, transparent conducting films were fabricated from the purified SWCNTs. Dispersion of purified SWCNTs was accomplished in 1,2-dichlorobenzene without using surfactants or polymers following ultrasonic process. We achieved coating of nanotubes film on poly ether suiphone (PES) for an average sheet resistance ~110 ${\Omega}/{\Box}$ of optical transmittance 80% at 550 nm. Conventional spin coating method was followed to fabricate films from the purified and dispersed nanotubes solution. The results will be presented.

  • PDF

Detection of H2S Gas with CuO Nanowire Sensor (산화구리 나노선 센서의 황화수소 감지특성)

  • Lee, Dongsuk;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.238-246
    • /
    • 2015
  • $H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.

A Rapid and Simple Homogenizing Method for the Purification of Single-walled Carbon Nanotubes

  • Choi, Sang-Kyu;Jung, Seung-Il;Lee, Seung-Beck
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.209-212
    • /
    • 2008
  • We developed a simple and effective purification method to obtain high-purity single-walled carbon nanotubes (SWCNTs) with low surface damage. The purification process consists of oxidization at $430^{\circ}C$ for 1 h in a furnace system of air atmosphere and homogenization in dilute hydrochloric acid solution for extremely short time. The role of homogenizer was examined during purification process in terms of purity and quality of purified SWCNTs. High-purity and low surface damage of SWCNT products was obtained using homogenizer which was operated at 8500 rpm for 10 min in the environment of 7 % HCI solution. From XRD spectra, we observed that metal catalysts were thoroughly removed. Raman spectra showed that the intensity values of crystallization ($I_{G}/I_{D}$) of purified SWCNTs were very similar with that of pristine SWCNTs. Moreover, the structure damage of purified SWCNTs was hard to find from electron microscopy. Consequently, homogenizing, which is a quick and simple manner, can be promising method for obtaining final SWCNTs with clearly high purity and crystallinity.

Development of Wearable Sensing and Feedback Product Design for Movement Monitoring (동작 모니터링을 위한 웨어러블 센싱 및 피드백 제품 디자인 개발)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Kang-Hwi;Lee, Jeong-Hwan;Park, Su-Youn;Choi, Hyeong-Ik;Jeon, Hak-Su;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.165-176
    • /
    • 2018
  • The objective of this study was to develop clothing-type wearable motion sensing and feedback systems to enhance children's sports by promoting visual and audio feedback. In this study, several applications, such as fabric sensors, sportswear integrated with various types of fabric sensors, and fabric-based motion sensing module design, as well as a visual and audio feedback system for gaining a better understanding of a child's interest in a type of exercise, were developed. An SWCNT-based stretchable fabric sensor was developed for motion sensing, and sportswear was designed using the fabric sensor that was integrated into the limbs of the garment. The sensing module was developed, and sensory performance was evaluated through a joint motion experiment for children. In addition, using the feedback system that was developed in the form of an accessory, the responses of light and sound were also examined based on the movement of the child who was wearing the sportswear prototypes. This study focused on the development and assessment of prototype designs for children's sportswear and accessory products that can help to ascertain a child's interest in a particular exercise.