Browse > Article
http://dx.doi.org/10.12989/anr.2020.8.3.245

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects  

Ouakad, Hassen M. (Department of Mechanical & Industrial Engineering, Sultan Qaboos University)
Sedighi, Hamid M. (Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz)
Al-Qahtani, Hussain M. (Mechanical Engineering Department, King Fahd University of Petroleum and Minerals)
Publication Information
Advances in nano research / v.8, no.3, 2020 , pp. 245-254 More about this Journal
Abstract
This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.
Keywords
single-walled carbon nanotube; nano-rotor; forward and backward whirling; nonlocal elasticity;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Tu, Q., Yang, Q., Wang, H. and Li, S. (2016), "Rotating carbon nanotube membrane filter for water desalination", Sci. Rep., 6, 26183. https://doi.org/10.1038/srep26183   DOI
2 Xu, L. and Yang, Q. (2015), "Multi-field coupled dynamics for a micro beam", Mech. Based Des. Struct. Mach., 43, 57-73. https://doi.org/10.1080/15397734.2014.928221   DOI
3 Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016   DOI
4 Barretta, R., Faghidian, S.A. and de Sciarra, F.M. (2019a), "Stressdriven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003   DOI
5 Barretta, R., Faghidian, S.A. and de Sciarra, F.M. (2019b), "A consistent variational formulation of Bishop nonlocal rods", Continuum Mech. Thermodyn., 1-13. https://doi.org/10.1007/s00161-019-00843-6
6 Barretta, R., Faghidian, S.A., de Sciarra, F.M. and Pinnola, F.P. (2019c), "Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2019.1683660
7 Barretta, R., de Sciarra, F.M. and Vaccaro, M.S. (2019d), "On nonlocal mechanics of curved elastic beams", Int. J. Eng. Sci., 144, 103140. https://doi.org/10.1016/j.ijengsci.2019.103140   DOI
8 Barretta, R., Faghidian, S.A., de Sciarra, F.M., Penna, R. and Pinnola, F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550   DOI
9 Yang, Z., Nakajima, M., Shen, Y. and Fukuda, T. (2011), "Nanogyroscope assembly using carbon nanotube based on nanorobotic manipulation", Proceedings of 2011 International Symposium on Micro-Nano Mechatronics and Human Science, IEEE, pp. 309-314. https://doi.org/10.1109/MHS.2011.6102199
10 Ebrahimi, F. and Shaghaghi, G.R. (2015b), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manufac. Tech., 8(4), 13-21.
11 Zhu, X. and Li, L. (2019), "A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect", Appl. Math. Mech.-Engl. Ed., 40, 1561-1588. https://doi.org/10.1007/s10483-019-2541-5   DOI
12 Basirjafari, S., Esmaielzadeh Khadem, S. and Malekfar, R. (2013a), "Validation of shell theory for modeling the radial breathing mode of a single-walled carbon nanotube", Int. J. Eng. Trans. A, 26(4), 447-454.
13 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
14 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403   DOI
15 Zhu, X. and Li, L. (2017a), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030   DOI
16 Zhu, X. and Li, L. (2017b), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067   DOI
17 Surana, K.S., Mysore, D. and Reddy, J.N. (2019), "Non-classical continuum theories for solid and fluent continua and some applications", Int. J. Smart Nano Mater., 10(1), 28-89. https://doi.org/10.1080/19475411.2018.1530700   DOI
18 Torkaman-Asadi, M.A., Rahmanian, M. and Firouz-Abadi, R.D. (2015), "Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations", Compos. Struct., 126, 52-61. https://doi.org/10.1016/j.compstruct.2015.02.037   DOI
19 Bouaouina, B., Besnard, A., Abaidia, S.E., Airoudj, A. and Bensouici, F. (2018), "Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive RF magnetron discharge", Surf. Coat. Technol., 333, 32-38. https://doi.org/10.1016/j.surfcoat.2017.10.028   DOI
20 Basirjafari, S., Khadem, S.E. and Malekfar, R. (2013b), "Radial breathing mode frequencies of carbon nanotubes for determination of their diameters", Curr. Appl. Phys., 13, 599-609. https://doi.org/10.1016/j.cap.2012.11.001   DOI
21 Cai, K., Li, Y., Qin, Q.H. and Yin, H. (2014), "Gradient less temperature-driven rotating motor from a double-walled carbon nanotube", Nanotechnology, 25, 1-6. https://doi.org/10.1088/0957-4484/25/50/505701
22 Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193   DOI
23 Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181. https://doi.org/10.1002/cnm.961   DOI
24 Mirtalaie, S.H. and Hajabasi, M.A. (2017), "Nonlinear axiallateral-torsional free vibrations analysis of Rayleigh rotating shaft", Arch. Appl. Mech., 87(9), 1465-1494. https://doi.org/10.1007/s00419-017-1265-6   DOI
25 Kotwal, T., Pawaskar, D.N. and Inamdar, M.M. (2018), "Effect of nonlinear damping on whirling motion of carbon nanotube oscillators", Proceedings of the 25th International Congress on Sound and Vibration 2018, ICSV 2018, pp. 1896-1903.
26 Kral, P. and Sadeghpour, H.R. (2002), "Laser spinning of nanotubes: A path to fast-rotating microdevices", Phys. Rev. B, 65, 161401. https://doi.org/10.1103/PhysRevB.65.161401   DOI
27 Kroner, E. (1963), "On the physical reality of torque stresses in continuum mechanics", Int. J. Eng. Sci., 1(2), 263-278. https://doi.org/10.1016/0020-7225(63)90037-5   DOI
28 De Clerck, J. (2014), Topics in Modal Analysis I, Springer-Verlag, New York, USA.
29 Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001   DOI
30 Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Mathe. Computat., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034   DOI
31 Demir, C. and Civalek, O. (2017a), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091   DOI
32 Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Adv. Nano Res., Int. J., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113
33 Nahvi, H. and Boroojeni, M.E. (2013), "Free vibrations of a rotating single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Acta Phys. Polon. A, 123, 304-306. https://doi.org/10.12693/APhysPolA.123.304   DOI
34 Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219, 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032   DOI
35 Natsuki, T., Melvin, G.J.H. and Ni, Q.Q. (2013), "Vibrational frequencies and raman radial breathing modes of multi-walled carbon nanotubes based on continuum mechanics", J. Mater. Sci. Res., 2(4), 1-11. https://doi.org/10.5539/jmsr.v2n4p1
36 Demir, C. and Civalek, O. (2017b), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016   DOI
37 Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093   DOI
38 Ebrahimi, F. and Shaghaghi, G.R. (2015a), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manufac. Tech., 8(4), 13-21.
39 Ouakad, H.M., El-Borgi, S., Mousavi, S.M. and Friswell, M.I. (2018), "Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory", Appl. Math. Model., 62, 207-222. https://doi.org/10.1016/j.apm.2018.05.034   DOI
40 Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001   DOI
41 Pinnola, F.P., Faghidian, S.A., Barretta, R. and de Sciarra, F.M. (2020), "Variationally consistent dynamics of nonlocal gradient elastic beams", Int. J. Eng. Sci., 149, 103220. https://doi.org/10.1016/j.ijengsci.2020.103220   DOI
42 Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Phys. E, 42, 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004   DOI
43 Rao, S.S. (2000), Mechanical Vibrations, Massachusetts; Addison-Wesley Publishing Company, New York, USA.
44 Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036   DOI
45 Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5   DOI
46 Shojaeefard, M.H., Saeidi Googarchin, H., Mahinzare, M. and Adibi, M. (2019), "Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media", J. Intel. Mater. Syst. Struct., 29(11), 2344-2361. https://doi.org/10.1177/1045389X18770856   DOI
47 Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077   DOI
48 Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X   DOI
49 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
50 Farajpour, M.R., Shahidi, A.R. and Farajpour, A. (2018), "A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires", Mat. Res. Exp., 5(3), 035026. https://doi.org/10.1088/2053-1591/aab3a9   DOI
51 Ghafarian, M. and Ariaei, A. (2016), "Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory", J. Appl. Phys., 120, 054301. https://doi.org/10.1063/1.4959991   DOI
52 Ghavanloo, E., Rafii-Tabar, H. and Fazelzadeh, S.A. (2019), Essential Concepts from Nonlocal Elasticity Theory. In: Computational Continuum Mechanics of Nanoscopic Structures, Springer Tracts in Mechanical Engineering, Springer, Cham.
53 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0   DOI
54 Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures, Nonlocal Continuum Mechanism Formulations, Springer, USA.
55 Gupta, S.S. and Batra, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Comput. Mat. Sci., 43(4), 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032   DOI
56 Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and in extensional modes of vibration", Comput. Mat. Sci., 47, 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007   DOI
57 Hayat, T., Haider, F., Muhammad, T. and Alsaedi, A. (2017), "Three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer porous medium", PLoS ONE, 12(7), e0179576. 10.1371/journal.pone.0179576   DOI
58 Huang, J. and Han, Q. (2016), "Controllable nanoscale rotating actuator system based on carbon nanotube and graphene", Nanotechnology, 27, 155501. https://doi.org/10.1088/0957-4484/27/15/155501   DOI
59 Khodabakhshi, M. and Moosavi, A. (2017), "Unidirectional Transport of Water Through an Asymmetrically Charged Rotating CNT", J. Phys. Chem. C, 121(42), 23649-23658. https://doi.org/10.1021/acs.jpcc.7b06003   DOI
60 Anderson, N., Hartschuh, A., Cronin, S. and Novotny, L. (2005), "Nanoscale vibrational analysis of single-walled carbon nanotubes", J. Am. Chem. Soc., 127(8), 2533-2537. https://doi.org/10.1021/ja045190i   DOI
61 Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., Int. J., 4(4), 265-279. https://doi.org/10.12989/anr.2016.4.4.265   DOI
62 Barooti, M.M., Safarpour, H. and Ghadiri, M. (2017), "Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations", Eur. Phys. J. Plus., 132, p. 6. https://doi.org/10.1140/epjp/i2017-11275-5   DOI