Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.5.238

Detection of H2S Gas with CuO Nanowire Sensor  

Lee, Dongsuk (Department of Materials Science and Engineering, Chungnam National University)
Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.25, no.5, 2015 , pp. 238-246 More about this Journal
Abstract
$H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.
Keywords
CuO nanowire; $H_2S$ sensor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. J. Reiffenstein, W. C. Hulbert and S. H. Roth, Annu. Rev. Pharmacol. Toxicol., 32(1), 109 (1992).   DOI   ScienceOn
2 P. Patnaik, A comprehensive guide to the hazardous properties of chemical substances, 3th ed., p.407, John Wiley & Sons., Wiley, USA (2007).
3 P. J. Baxter, T. C. Aw, A. Cockcroft, P. Durrington and J. M. Harrington, Hunter's diseases of occupations, 10th ed., p.292, CRC Press., CRC, USA (2010).
4 H. Liu, S. P. Gong, Y. X. Hu, J. Q. Liu and D. X. Zhou, Sens. Actuators, B, 140(1), 190 (2009).   DOI   ScienceOn
5 H. Liu, S. Gong, Y. Hu, J. Zhao, J. Liu, Z. Zheng and D. Zhou, Chem. Int., 35(3), 961 (2009).
6 N. Zhang, K. Yu, Q. Li, Z. Q. Zhu and Q. Wan, Jpn. J. Appl. Phys., 103(10), 104305 (2008).   DOI   ScienceOn
7 J. Kim and K. Yong, J. Phys. Chem. C, 115(15), 7218 (2011).   DOI
8 C. S. Rout, M. Hegde and C. N. R. Rao, Sens. Actuators, B, 128(2), 488 (2008).   DOI   ScienceOn
9 L. F. Reyes, A. Hoel, S. Saukko, P. Heszler, V. Lantto and C. G. Granqvist, Sens. Actuators, B, 117(1), 128 (2006).   DOI   ScienceOn
10 R. Ionescu, A. Hoel, C. G. Granqvist, E. Llobet and P. Heszler, Sens. Actuators, B, 104(1), 132 (2005).   DOI   ScienceOn
11 V. D. Kapse, S. A. Ghosh, G. N. Chaudhari and F. C. Raghuwanshi, Talanta, 76(3), 610 (2008).   DOI   ScienceOn
12 M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A. K. Tyagi, S. K. Gupta. and J. V. Yakhmi, Sens. Actuators, B, 133(2), 456 (2008).   DOI   ScienceOn
13 R. H. Bari, S. B. Patil and A. R. Bari, Int. Nano Lett., 3(1), 1 (2013).   DOI   ScienceOn
14 P. Vikas, J. Datta, P. Shailesh, C. Manik, G. Prsad, P. Sanjay, R. Bhara and S. Shashwati, J. Sens. Technol., 1(2), 36 (2011).   DOI
15 F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang and Y. Qin, J. Phys. Chem. C, 114(45), 19214 (2010).   DOI   ScienceOn
16 Y. Shen, M. Guo, X. Xia and G. Shao, Acta Mater., 85, 122 (2015).   DOI   ScienceOn
17 L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li and T. Yu, Nanotechnology, 20(8), 085203 (2009).   DOI   ScienceOn
18 X. K. Chen, J. C. Irwin and J. P. Franck, Phys. Rev. B: Condens. Mater Mater. Phys., 52(18), R13130 (1995).   DOI
19 W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin and Q. J. Chen, Phys. D: Appl. Phys., 33(8), 912 (2000).   DOI
20 J. F. Xu, W. Ji, Z. X. Shen, W. S. Li, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin, J. Raman Spectrosc., 30(5), 413 (1999).   DOI
21 N. D. Hoa, N. Van Quy, Y. Cho and D. Kim, Sens. Actuators, B, 135(2), 656 (2009).   DOI   ScienceOn
22 S. Han, H. Y. Chen, Y. B. Chu and H. C. Shih, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 23(6), 2557 (2005).   DOI
23 J. Park, K. Lim, R. D. Ramsier and Y. C. Kang, Bull. Korean Chem. Soc., 32(9), 3395 (2011).   DOI   ScienceOn
24 E. Comini, G. Faglia and G. Sberveglieri, Solid State Gas Sensing., p.64., Springer, New York (2009).
25 N. D. Hoa, N. Van Quy, H. Jung, D. Kim, H. Kim and S. K. Hong, Sens. Actuators, B, 146(1), 266 (2010).   DOI   ScienceOn
26 S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati and A. Kock, Sens. Actuators, B, 186, 550 (2013).   DOI   ScienceOn
27 X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang and T. Wang, J. Phys. Chem. C, 112(32), 12157 (2008).   DOI
28 X. Kong and Y. Li, Sens. Actuators, B, 105(2), 449 (2005).   DOI   ScienceOn
29 X. Zhou, Q. Cao, H. Huang, P. Yang and Y. Hu, Mater. Sci. Eng. B, 99(1), 44 (2003).   DOI   ScienceOn