• Title/Summary/Keyword: SVM algorithm

Search Result 638, Processing Time 0.029 seconds

Target Classification Algorithm Using Complex-valued Support Vector Machine (복소수 SVM을 이용한 목표물 식별 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • In this paper, we propose a complex-valued support vector machine (SVM) classifier which process the complex valued signal measured by pulse doppler radar (PDR) to identify moving targets from the background. SVM is widely applied in the field of pattern recognition, but features which used to classify are almost real valued data. Proposed complex-valued SVM can classify the moving target using real valued data, imaginary valued data, and cross-information data. To design complex-valued SVM, we consider slack variables of real and complex axis, and use the KKT (Karush-Kuhn-Tucker) conditions for complex data. Also we apply radial basis function (RBF) as a kernel function which use a distance of complex values. To evaluate the performance of the complex-valued SVM, complex valued data from PDR were classified using real-valued SVM and complex-valued SVM. The proposed complex-valued SVM classification was improved compared to real-valued SVM for dog and human, respectively 8%, 10%, have been improved.

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM (다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyung-Chang;Sim, Kwee-Bo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF

Speaker Verification System Using Support Vector Machine with Genetic Algorithms (유전자 알고리즘을 결합한 Support Vector Machine의 화자인증에서의 성능분석)

  • 최우용;이경희;반성범
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.557-560
    • /
    • 2003
  • Voice is one of the promising biometrics because it is one of the most convenient ways human would distinguish someone from others. The target of speaker verification is to divide the client from imposters. Support Vector Machine(SVM) is in the limelight as a binary classifier, so it can work well in speaker verification. In this paper, we combined SVM with genetic algorithm(GA) to reduce the dimensionality of input feature. Experiments were conducted with Korean connected digit database using different feature dimensions. The verification accuracy of SVM with GA is slightly lower than that of SVM, but the proposed algorithm has greater strength in the memory limited systems.

  • PDF

Semisupervised Learning Using the AdaBoost Algorithm with SVM-KNN (SVM-KNN-AdaBoost를 적용한 새로운 중간교사학습 방법)

  • Lee, Sang-Min;Yeon, Jun-Sang;Kim, Ji-Soo;Kim, Sung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1336-1339
    • /
    • 2012
  • In this paper, we focus on solving the classification problem by using semisupervised learning strategy. Traditional classifiers are constructed based on labeled data in supervised learning. Labeled data, however, are often difficult, expensive or time consuming to obtain, as they require the efforts of experienced human annotators. Unlabeled data are significantly easier to obtain without human efforts. Thus, we use AdaBoost algorithm with SVM-KNN classifier to apply semisupervised learning problem and improve the classifier performance. Experimental results on both artificial and UCI data sets show that the proposed methodology can reduce the error rate.

Multicore Processor based Parallel SVM for Video Surveillance System (비디오 감시 시스템을 위한 멀티코어 프로세서 기반의 병렬 SVM)

  • Kim, Hee-Gon;Lee, Sung-Ju;Chung, Yong-Wha;Park, Dai-Hee;Lee, Han-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.161-169
    • /
    • 2011
  • Recent intelligent video surveillance system asks for development of more advanced technology for analysis and recognition of video data. Especially, machine learning algorithm such as Support Vector Machine (SVM) is used in order to recognize objects in video. Because SVM training demands massive amount of computation, parallel processing technique is necessary to reduce the execution time effectively. In this paper, we propose a parallel processing method of SVM training with a multi-core processor. The results of parallel SVM on a 4-core processor show that our proposed method can reduce the execution time of the sequential training by a factor of 2.5.

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Abnormal Diagnostics of Vibration System using SVM (SVM기법을 이용한 진동계의 고장진단에 관한 연구)

  • Ko, Kwang-Won;Oh, Yong-Sul;Jung, Qeun-Young;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

Performance Improvement of the SVM by Improving Accuracy of Estimating Vanishing Points (소실점 추정 정확도 개선을 통한 SVM 성능 향상)

  • Ahn, Sang-Geun;Seo, Tae-Kyu;Jeon, Gwang-Gil;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.361-367
    • /
    • 2016
  • In this paper, we propose an improved single view metrology (SVM) algorithm to accurately measure the height of objects. In order to accurately measure the size of objects, vanishing points have to be correctly estimated. There are two methods to estimate vanishing points. First, the user has to choose some horizontal and vertical lines in real world. Then, the user finds the cross points of the lines. Second, the user can obtain the vanishing points by using software algorithm such as [6-9]. In the former method, the user has to choose the lines manually to obtain accurate vanishing points. On the other hand, the latter method uses software algorithm to automatically obtain vanishing points. In this paper, we apply image resizing and edge sharpening as a pre-processing to the algorithm in order to improve performance. The estimated vanishing points algorithm create four vanishing point candidates: two points are horizontal candidates and the other two points are vertical candidates. However, a common image has two horizontal vanishing points and one vertical vanishing point. Thus, we eliminate a vertical vanishing point candidate by analyzing the histogram of angle distribution of vanishing point candidates. Experimental results show that the proposed algorithm outperforms conventional methods, [6] and [7]. In addition, the algorithm obtains similar performance with manual method with less than 5% of the measurement error.

Path planning of a Robot Manipulator using Retrieval RRT Strategy

  • Oh, Kyong-Sae;Kim, Eun-Tai;Cho, Young-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.138-142
    • /
    • 2007
  • This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the: given environment. The suggested method is applied to the control of $KUKA^{TM}$, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of $MatLab^{TM}\;and\;RecurDyn^{TM}$.