References
- S.R. Gunn, Support Vector Machines for Classification and Regression, ISIS Technical Report, University of Southampton ,May 1998
- V. Cherkassky, 'The Nature of Statistical Learning Theory,' IEEE Trans. on Neural Networks, vol. 8, no. 6, pp. 1564-1564, Nov. 1997 https://doi.org/10.1109/TNN.1997.641482
- V. Vapnik, The Nature of Statistical Learning Theory Springer, New York, 1995
- V. Vapnik, V. 'An Overview of Statistical Learning Theory,' IEEE Trans. on Neural Networks, vol. 10, no. 5, pp. 988-999, Sept. 1999 https://doi.org/10.1109/72.788640
- F. Melgani and L. Bruzzone, 'Classification of hyper spectral remote sensing images with support vector machines,' IEEE Trans. on Geoscience and Remote Sensing, Vol.42, pp. 1778-1790, Aug. 2004 https://doi.org/10.1109/TGRS.2004.831865
- S. M. LaValle and M. Steven, ' Planning Algorithms,' Cambridge University Press, 2006
- B. R. Donald, K. M. Lynch and D. Rus, Algorithmic and Computational Robotics: New Directions, Wellesley, 2001
- S. M. LaValle and J. J. Kuffner, 'RRT-connect: An efficient approach to single-query path planning,' In: Proc. IEEE International Conf. Robotics and Automation, pp. 995-1001, 2000
- L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. ZeCun, U. Muller, E. Sackinger, P. Simard and V. Vapnik, 'Comparison of classifier methods: A case study in handwriting digit recognition,' in: Proc. of International Conf. on Pattern Recognition, pp. 77-87, 1994
- KUKA manipuator, http://www.kuka.com/en/
- FuntionBay, Inc., http://vwww.functionbay.co.kr/
- S. Park, K. Oh and E. Kim, 'Cosimulation ofthecontrol 6-DOF Kuka manipulator by simulink and Recurdyn,' International Technical Conf. on Circuits/Systems. Computers and Communications, vol. 1, pp. 271-272, July 2005
- Robotics Toolbox for MATLAB (Release 7), http://www.cat.csiro.au/ict/staff/pic/robot/
- The Motion Strategy Library(MSL) at University of Illinois, http://msl.cs. uiuc.edu/ -Iavalle/