• Title/Summary/Keyword: SVM

Search Result 2,119, Processing Time 0.035 seconds

Recognition of Handwritten Numerals using SVM Classifiers (SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Kyoung-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.136-142
    • /
    • 2007
  • Recent researches in the recognition system have shown that SVM (Support Vector Machine) classifiers often have superior recognition rates in comparison to other classifiers. In this paper, we present the handwritten numeral recognition algorithm using SVM classifiers. The numeral features used in our algorithm are mesh features, directional features by Kirsch operators and concavity features, where first two features represent the foreground information of numerals and the last feature represents the background information of numerals. These features are complements each of the other. Since SVM is basically a binary classifier, it is required to construct and combine several binary SVMs to get the multi-class classifiers. We use two strategies for implementing multi-class SVM classifiers: "one against one" and "one against the rest", and examine their performances on the features used. The efficiency of our method is tested by the CENPARMI handwritten numeral database, and the recognition rate of 98.45% is achieved.

  • PDF

MPW Chip Implementation and Verification of High-performance Vector Inner Product Calculation Circuit for SVM-based Object Recognition (SVM 기반 사물 인식을 위한 고성능 벡터 내적 연산 회로의 MPW 칩 구현 및 검증)

  • Shin, Jaeho;Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.124-129
    • /
    • 2013
  • This paper proposes a high-performance vector inner product calculation circuit for real-time object recognition based on SVM algorithm. SVM algorithm shows a higher detection rate than other object recognition algorithms. However, it requires a huge amount of computational efforts. Since vector inner product calculation is one of the major operations of SVM algorithm, it is important to implement a high-performance vector inner product calculation circuit for real-time object recognition capability. The proposed circuit adopts the pipeline architecture with six stages to increase the operating speed and makes it possible to recognize objects in real time based on SVM. The proposed circuit was described in Verilog HDL at RTL. For silicon verification, an MPW chip was fabricated using TSMC 180nm standard cell library. The operation of the implemented MPW chip was verified on the test board with test application software developed for the chip verification.

A Design of RSIDS using Rough Set Theory and Support Vector Machine Algorithm (Rough Set Theory와 Support Vector Machine 알고리즘을 이용한 RSIDS 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.179-185
    • /
    • 2012
  • This paper proposes a design of RSIDS(RST and SVM based Intrusion Detection System) using RST(Rough Set Theory) and SVM(Support Vector Machine) algorithm. The RSIDS consists of PrePro(PreProcessing) module, RRG(RST based Rule Generation) module, and SAD(SVM based Attack Detection) module. The PrePro module changes the collected information to the data format of RSIDS. The RRG module analyzes attack data, generates the rules of attacks, extracts attack information from the massive data by using these rules, and transfers the extracted attack information to the SAD module. The SAD module detects the attacks by using it, which the SAD module notifies to a manager. Therefore, compared to the existing SVM, the RSIDS improved average ADR(Attack Detection Ratio) from 77.71% to 85.28%, and reduced average FPR(False Positive ratio) from 13.25% to 9.87%. Thus, the RSIDS is estimated to have been improved, compared to the existing SVM.

Classification of 18F-Florbetaben Amyloid Brain PET Image using PCA-SVM

  • Cho, Kook;Kim, Woong-Gon;Kang, Hyeon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Jeong, Young-Jin;Kang, Do-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish ${\beta}$-Amyloid ($A{\beta}$) positive from $A{\beta}$ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). $^{18}F$-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for $A{\beta}$ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for $A{\beta}$ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify $^{18}F$-Florbetaben amyloid brain PET image for $A{\beta}$ positivity using PCA-SVM model, with no additional effects on GMM.

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

A Study on the Performance Enhancement of Face Detection using SVM (SVM을 이용한 얼굴 검출 성능 향상에 대한 연구)

  • Lee Chi-Ceun;Jung Sung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.330-337
    • /
    • 2005
  • This paper proposes a method which improves the performance of face detection by using SVM(Support Vector Machine). first, it finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine). Experimental results shows that the proposed method improve accuracy of face detection in comparison with existing method.

Deep LS-SVM for regression

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.827-833
    • /
    • 2016
  • In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Abnormal Diagnostics of Vibration System using SVM (SVM기법을 이용한 진동계의 고장진단에 관한 연구)

  • Ko, Kwang-Won;Oh, Yong-Sul;Jung, Qeun-Young;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

Robust SVM Design for Multi-Class Classification - Application to Biometric data - (다중 클래스 분류를 위한 강인한 SVM 설계 방법 - 생체 인식 데이터에의 적용 -)

  • Cho, Min-Kook;Park, Hye-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.760-762
    • /
    • 2005
  • Support vector machine(SVM)은 졸은 일반화 능력을 가진 학습시스템으로, 최근 다양한 패턴 인식 분야에서 적용되고 있다. SVM은 기본적으로 이진 분류기이므로 두 개 이상의 클래스를 분류하기 위해서는 다중 클래스 분류가 가능한 형태로의 설계 방법이 필요하다. 이를 위해 각 클래스별로 독립적인 SVM들을 만들어 결과를 병합하는 방식이 주로 사용되어 왔다. 그러나 이러한 방법은 클래스의 수는 않고 한 클래스 내의 데이터의 수가 많지 않은 경우에는 SVM의 일반화 성능을 저하시키고 노이즈에 민감해지는 문제점을 가지고 있다. 이를 해결하기 위해 본 논문에서는 각 클래스내의 데이터간의 유사도 측정을 위한 통계적 정보를 안정적으로 추출하기 위해 두 데이터의 쌍을 입력으로 받는 새로운 SVM 설계 방법을 제시한다. 제안한 방법을 실제 생체인식 데이터에 적용한 실험에서 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.

  • PDF