• 제목/요약/키워드: SURFACE CRYSTALLIZATION

검색결과 432건 처리시간 0.023초

졸-겔법에 의한 이트리안 안정화 지프코니아박막의 결정화 (Crystallization of Yttria-Stabilized-Zirconia Film by Sol-Gel Process)

  • 서원찬;조차제;윤영섭;황운석
    • 한국표면공학회지
    • /
    • 제30권3호
    • /
    • pp.183-190
    • /
    • 1997
  • Fabrication and crystallization characteristics of yttria($T_2O_3$) stabilized zirconia(YSZ) thin film by sol-gel process were studied. YSZ sol was synthesized with zirconium n-propoxide($Zr(OC_3H_7)_4)$) and yttrium nitrate pentahydrate ($Y(NO_3)_3.5H_2O$). YSZ film was prepared by depositing the polymeric sol on porous $Al_2O_3$ substrate by spin-coating, and the film characteristics were investigated by FRIR, TG-DTA, XRD, DSC, optical microscopy and SEM. The film topology was uniform and cracks were not found. It was found that the annealing temperature and the concentration of stabilizer affect the crystallization of YSZ film. The YSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$, and it was not converted to cubic structure until $1100^{\circ}C$. It seemed that the grains were formed over $700^{\circ}C$and the average grain size was obtained about 0.2$\mu\textrm{m}$.

  • PDF

후열처리에 의한 알루미늄 산화층의 특성 향상 (Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment)

  • 전윤남;김상준;박지현;정나겸
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.275-281
    • /
    • 2019
  • Anodization is widely used to enhance the properties of aluminum, such as hardness, electric resistance, abrasion resistance, corrosion resistance etc. But these properties can be enhanced with additional process. According to the partial crystallization of oxide layer with post heat treatment, enhanced hardness can be expected with partial crystallization. In this study, post heat treatments were applied to the anodized aluminum alloys of Al6061 to achieve the partial crystallization, and crystallizations were evaluated with the reduced breakdown voltages. Interestingly, remarkable enhanced hardness (21~29%), abrasion resistance (26~62%), and reduced breakdown voltage (24~44%) were observed for the sulfuric acid anodized samples when we annealed the anodized samples with 1hour post heat treatment at $360^{\circ}C$. For the Al5052 alloys, a lot of cracks were observed when we applied the post heat treatment.

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동 (Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy)

  • 홍원의;노재상
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.7-11
    • /
    • 2010
  • Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.

Removal of sulphate from landfill leachate by crystallization

  • Aygun, Ahmet;Dogan, Selim;Argun, Mehmet Emin;Ates, Havva
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.24-30
    • /
    • 2019
  • The present study explores the applicability of response surface methodology (RSM) in conjunction with central composite design (CCD) matrix to statistically optimize ettringite crystallization process for the removal of sulphate from landfill leachate. A three factor-five coded level CCD with 20 runs, was performed to estimate the best fitted model. The RSM results indicated that the fitted quadratic regression model could be appropriate to predict sulfate removal efficiency. The pH was identified as the most dominant parameter affecting sulphate removal. 61.6% of maximum sulphate removal efficiency was obtained at pH of 11.06 for a 1.87 of $Ca/SO_4$ and 0.51 of $Al/SO_4$ molar ratios. The operating cost for ettringite crystallization at optimized conditions was calculated to be 0.52 $/$m^3$. The significance of independent variables and their interactions were tested by analysis of variance. Scanning electron microscope (SEM) and SEM coupled with energy dispersive X-Ray spectroscopy results confirmed the formation of ettringite crystal and were used to describe its morphology features.

석탄 바닥재-${Na_2}O-{Li_2O}$계 결정화 유리의 미세구조 분석 (Microstructural analysis of coal bottom ash-${Na_2}O-{Li_2O}$ system glass-ceramics)

  • 강승구
    • 한국결정성장학회지
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2009
  • 화력발전소로부터 발생된 석탄 바닥재(coal bottom ash)에 융제로 $Na_{2}O$$Li_{2}O$를, 핵 형성제로 $TiO_2$를 첨가하여 결정화유리를 제조한 뒤 그 미세구조를 분석하였다. 시편내 주결정상은 nepheline이었고, $TiO_2$가 첨가됨에 따라 nepheline 결정상 분율이 증가되었다. $TiO_2$가 첨가되지 않은 시편은 표면 결정화 기구에 수지(dendrite) 형태의 결정상이 성장되었으며, 내부 모상에는 결정이 거의 생성되지 않았다. 그러나 $TiO_2$ 첨가량이 4% 이상으로 증가되면, 표면결정화 기구는 억제되어 표면결정층의 두께가 얇아졌고 내부 모상은 결정질로 전이되었으며 동시에 $1{\mu}m$ 이하 크기의 미립자도 함께 생성되었다. 특히 6%의 $TiO_2$가 첨가된 결정화유리 내부에는 길이가 $5{\mu}m$인 수지상 결정들이 서로 얽혀진 형태를 보였으며, 이러한 미세구조는 외부로부터 하중을 가해졌을 때 발생되는 균열의 전파를 효과적으로 억제할 수 있을 것으로 예상된다.

CeO2 함유 러스터 유약 제조 및 결정화 특성 (Preparation and Crystallization Behavior of Luster Glaze Containing CeO2)

  • 김성균;이성민;유중환;김형태
    • 한국세라믹학회지
    • /
    • 제40권12호
    • /
    • pp.1224-1228
    • /
    • 2003
  • 장석, 규석, 석회석 등의 천연원료와 CeO$_2$를 출발원료로 하여 프릿 형태의 러스터 유약을 제조하고 결정화 특성과 러스터 효과의 발현기구를 분석하였다. 시유한 시편이 110$0^{\circ}C$에서 소성되었을 때, 유면과 수평한 방향으로 (100)면이 배향된 200nm 크기의 CeO$_2$ 결정이 시편의 표면에 생성되었다. 표면에서 결정화된 입자의 빈도는 유약의 내부보다 훨씬 높았으며, 전체 표면적의 60% 이상을 배향된 CeO$_2$ 결정이 점유하였다. 배향된 CeO$_2$ 결정립은 유약내의 프릿 입자가 완전히 용융되어 내부 계면이 사라진 이후부터 발달하기 시작하였다. 본 연구에서 개발된 유약의 러스터 효과는 유약표면에 석출된 CeO$_2$가 고굴절을 갖는 물직일 뿐만 아니라 최대 산란을 일으키는 결정크기(200nm)이고 판상형태로 배열되어 있기 때문인 것으로 판단된다.

단결정 실리콘 제조용 석영유리도가니의 결정화에 대한 연구 (Study on the crystallization of quartz glass crucibles for preparation of single crystal silicon)

  • 임종원;김태희;박경봉
    • 한국결정성장학회지
    • /
    • 제28권3호
    • /
    • pp.99-105
    • /
    • 2018
  • 본 연구에서는 단결정 실리콘 제조수율에 영향을 미치는 것으로 알려진 석영도가니 표면의 불균일한 결정화를 피하기 위해, 결정화촉진제로 Ba이 포함된 코팅용액을 제조하여 분무열분해법으로 코팅 후, 열처리에 따른 석영도가니 표면의 결정화를 조사하였고, 다음과 같은 결과를 얻었다. 코팅하지 않은 도가니의 경우 온도가 상승함에 따라 $1350^{\circ}C$에서부터 결정화가 진행되는 것을 알 수 있었으며, $1450^{\circ}C$가 되어서야 균일하게 결정화가 되는 것을 확인하였으며, 결정상은 ${\beta}$-cristobalite로 확인되었다. Ba이 코팅된 도가니는 $1000^{\circ}C$부터 결정화가 진행되고 $1300^{\circ}C$에서 전체적으로 도가니 표면에 균일하게 결정화가 진행되는 것을 알 수 있었다. Ba이 코팅된 도가니는 결정상으로 ${\alpha}$-cristobalite와 침상 결정의 $BaSi_2O_5$이 생성되었다가 소멸하며, ${\beta}$-cristobalite 상이 최종적으로 균일한 결정상으로 남는 것을 알 수 있다.

플루오르함량이 Fluorophologopite 결정들을 함유하고 있는 기계 가공성 결정화유리의 합성에 미치는 영향에 관한 연구 (Study on Effect of Fluorine Content on the Synthesis of Machinable Glass-ceramics Based on Fluorophlogopite Crystals)

  • 정형진;김병호;신용규
    • 한국세라믹학회지
    • /
    • 제23권4호
    • /
    • pp.1-10
    • /
    • 1986
  • The crystallization behaviour and the machinability of mica glass-ceramics with the content of F1 were studied. The material was made from the $K_2O-MgO-Al_2O_3-B_2O_3-SiO_2-F$ glasses by the heattreatment at 80$0^{\circ}C$-110$0^{\circ}C$ where the content of F-1 was changed in the range from 1, 3wt% to 6.1wt%. X-ray diffraction phase analysis and optical observation were adopted to study the crystallization behaviour. The machinability was measured by a manual sawing test and MOR. The crystal phases of these glass-ceramics identified by XRD were chondrodite fluoborite and norbergite at low temperature but fluorophlogopite at high temperature. The crystallization of glasses containing 1.3wt% -2.5wt% F-1 were predominately controlled by surface crystallization while the crystallization of glasses containing 3.8 wt% -6.1wt% F-1 were controlled by volume crystallization. Among the test the best machinability and strength value were obtained from those specimens contained fluoride 4.2wt% -4.4wt% and when the heattreatment was performed at 95$0^{\circ}C$-110$0^{\circ}C$ for 2 hours.

  • PDF