Microstructural analysis of coal bottom ash-${Na_2}O-{Li_2O}$ system glass-ceramics

석탄 바닥재-${Na_2}O-{Li_2O}$계 결정화 유리의 미세구조 분석

  • Published : 2009.02.28

Abstract

The glass-ceramics composed of coal bottom ash produced from a thermal power plant, $Na_{2}O$ and $Li_{2}O$ as a flux agent and $TiO_2$ as a nucleation agent were fabricated and its microstructures were analyzed. The nepheline was a major crystal phase in the glass-ceramics fabricated and its amount increased with $TiO_2$ addition. The glass-ceramics without $TiO_2$ addition had the thick surface crystals induced by a surface-crystallization mechanism and no crystal in the interior matrix. The surface crystallization, however, was restrained and the interior matrix was completely crystallized showing dendrite shape spread with fine particles < $1{\mu}m$ when added with $TiO_2$ above 4 wt%. For the glass-ceramics containing 6 wt% $TiO_2$, the $5{\mu}m$-long dendrite crystal; were interlocked each other which could suppress the crack propagation effectively at the external loading applied.

화력발전소로부터 발생된 석탄 바닥재(coal bottom ash)에 융제로 $Na_{2}O$$Li_{2}O$를, 핵 형성제로 $TiO_2$를 첨가하여 결정화유리를 제조한 뒤 그 미세구조를 분석하였다. 시편내 주결정상은 nepheline이었고, $TiO_2$가 첨가됨에 따라 nepheline 결정상 분율이 증가되었다. $TiO_2$가 첨가되지 않은 시편은 표면 결정화 기구에 수지(dendrite) 형태의 결정상이 성장되었으며, 내부 모상에는 결정이 거의 생성되지 않았다. 그러나 $TiO_2$ 첨가량이 4% 이상으로 증가되면, 표면결정화 기구는 억제되어 표면결정층의 두께가 얇아졌고 내부 모상은 결정질로 전이되었으며 동시에 $1{\mu}m$ 이하 크기의 미립자도 함께 생성되었다. 특히 6%의 $TiO_2$가 첨가된 결정화유리 내부에는 길이가 $5{\mu}m$인 수지상 결정들이 서로 얽혀진 형태를 보였으며, 이러한 미세구조는 외부로부터 하중을 가해졌을 때 발생되는 균열의 전파를 효과적으로 억제할 수 있을 것으로 예상된다.

Keywords

References

  1. S.U. Shin, S. Kumar, T.U. Jung and B.W. Shin, "The strength and characteristic of PCC bottom ash", J. Kor. Geo-Environ. Soc. 8(2) (2007) 57
  2. I. Kula, A. Olgun, V. Sevinc and Y. Erdogan, "An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as portland cement replacement materials", Cement and Concrete Research 32 (2002) 227 https://doi.org/10.1016/S0008-8846(01)00661-5
  3. D.U. Lee and Y.S. Kim, "A study on the strength properties of concrete containing bottom ash as a part of fine aggregate", J. Architectural Institute of Korea 22(6) (2006) 79
  4. C.T. Kniess, J.C. de Lima, P.B. Prates, N.C. Kuhnen and H.G. Riella, "Dilithium dialuminium trisilicate phase obtained using coal bottom ash", J. of Non-Crystalline Solids 353 (2007) 4819 https://doi.org/10.1016/j.jnoncrysol.2007.06.047
  5. C.P. Bergmann, "Sinterability study of ceramic bodies made from a mixture of mineral coal bottom ash and soda-lime glass cullet", Waste Manage Res. 25 (2007) 77 https://doi.org/10.1177/0734242X07069764
  6. C.T. Kniess, C.D.G. de Borba, E. Neves, N.C. Kuhnen and H.G. Riella, "Obtaining and characterizing Li$_2$O-Al$_2$O$_3$-SiO$_2$ glass-ceramics using bottom ash as raw material", Interceram 51 (2002) 140
  7. J. Zhang, W. Dong and J. Li, "Utilization of coal fly ash in the glass-ceramic production", J. of Hazardous Materials 149 (2007) 523 https://doi.org/10.1016/j.jhazmat.2007.07.044
  8. X. Querol, A. Alastuey, N. Moreno, E. Alvarez-Ayuso and A. Garcia-Sanchez, "Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash", Chemosphere 62 (2006) 171 https://doi.org/10.1016/j.chemosphere.2005.05.029
  9. S.J. Jang and S.G. Kang, "Microstructural analysis for hybrid materials composing of nepheline crystal and glass matrix fabricated from coal bottom ash", J. Ceram. Proc. Res. 10(1) (2009) in press
  10. S.G. Kang, "Microstructure of glass-ceramics made from bottom ash produced at a thermal power plant", Kor. J. Mat. Res. 19(2) (2009) in press https://doi.org/10.3740/MRSK.2009.19.2.095
  11. W. Holand and G. Beall, "Glass Ceramic Technology", The American Ceramic Society, USA (2002) p. 53
  12. M.F. Berard and D.R. Wider, "Fundamentals of Phase Equilibria in Ceramic Systems", R.A.N., USA (1990) p. 25