• Title/Summary/Keyword: STZ-induced diabetes

Search Result 411, Processing Time 0.02 seconds

Antioxidant Activity of Aqueous Extract of Coscinium fenestratum in STZ-Nicotinamide Induced Diabetic Rats

  • Punitha, I.S.R.;Bhat, Nalini;Rajendran, K.;Shirwaikar, Arun;Shirwaikar, Annie
    • Natural Product Sciences
    • /
    • v.11 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • The aqueous extract of Coscinium fenestratum was studied for its antioxidant status in STZ-nicotinamide induced type 2 diabetic rats at two dose levels of 250 mg/kg and 500 mg/kg. At the end of the experimental period, diabetic rats treated with aqueous extract at both dose levels showed a significant increase in the levels of enzymatic antioxidants such as glutathione peroxidase, glutathione synthetase, peroxidase, superoxide dismutase and catalase as compared to the untreated control. Similarly, a significant increase was also observed in the levels of the non enzymatic antioxidants ceruloplasmin, ascorbic acid and tocopherol. The results suggest that the aqueous stem extract of C. fenestratum prevents type 2 diabetes mellitus induced oxidative stress.

Improvement of Cardiovascular Dysfunction in Diabetic Rat by KST221085 (당뇨병성 심혈관합병증에 대한 KST221085의 개선효과)

  • 정이숙;한호규;이수환;백은주;문창현
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.276-281
    • /
    • 2001
  • The present study was conducted to evaluate the effect of KST221085, a newly synthesized antidiabetic agent, on the hearts from streptozotocin (STZ)-induced diabetic rats. In isolated diabetic hearts, left ventricular developed pressure (LVDP), heart rate (HR) and coronary flow rate (CFR) were decreased compared to normal control, indicating cardiovascular dysfunction in diabetic heart. The treatment with 10 $\mu$M KST221085 remarkably improved the diabetes-induced contractile impairment, without any influence on HR. Reduced coronary flow in diabetic heart was also significantly increased by treatment with 10 $\mu$M KST221085. In isolated aorta from diabetic rat, treatment with 10 $\mu$M KST221085 increased endothelium-dependent relaxation, suggesting that KST221085 can improve the impaired endothelial function in diabetic aorta. Our results suggest that KST221085 treatment can improve the cardiovascular dysfunction in STZ-induced diabetic rats.

  • PDF

Effects of Salicornia Herbacea L. Supplementation on Antioxidative Enzyme Activities in Streptozotocin-Induced Diabetic Rats (함초 첨가식이가 당뇨유발 흰쥐의 항산화효소 활성에 미치는 영향)

  • Kim, Myung-Wha
    • Journal of Nutrition and Health
    • /
    • v.41 no.7
    • /
    • pp.583-593
    • /
    • 2008
  • This study was designed to examine the effects of Salicornia herbacea L. (glasswort: GW) on hepatic antioxidative enzyme activities in diabetic rats. Diabetes mellitus was induced in male Sprague-Dawley rats weighing 200-220g by an injection of streptozotocin (STZ) dissolved in a citrate buffer into the tail vein at a dose of 45 mg/kg of body weight. Sprague-Dawley rats were fed an AIN-93 recommended diet and the experimental groups were fed a modified diet containing 10% and 20% of glasswort powder for 4 weeks. The experimental groups were divided into 6 groups which consisted of normal (N)-control group, N-GW 10% and N-GW 20% treated groups, STZ-control, STZ-GW 10% and STZ-GW 20% treated groups. The activities of Xanthine oxidase (XOD), glutathione- S-transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD) and CAT (CAT) were measured in the homogenates of liver. The activity of CAT was lower in the supplementary group with glasswort compare to the STZcontrol group but it was not significantly different. The activity of SOD was not significant in all of experimental groups. The activity of GR was significantly increased in the normal supplementary group with glasswort, and GPX activity was significantly increased in STZ-GW 10% group compare to the STZ-control group. The activity of XOD was significantly decreased in the all of supplementary groups with glasswort. The activity of GST was significantly increased in the N-GW 20% group and it was significantly decreased in the STZ-GW 20% group. These results show that the supplementation of glasswort may have favorable influence on antioxidative status in diabetic rats and it may be useful for the diabetic complications as functional food.

Effect of Momordica charantia on Glucagon Secretion in High-fat diet(HFD)/Streptozotocin(STZ)-induced Diabetic Rat (고지방식이(HFD)/stereptozotocin(STZ) 유도 당뇨모델에서 여주가 글루카곤 분비에 미치는 영향)

  • Kim, Seong-Eun;Kim, Sang-Back;Kim, Seul Ki;Kim, Hyun-Kyu;Park, Byoungjun;Lee, Hak Sung
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.837-846
    • /
    • 2020
  • In present study, we investigated the antidiabetic effect of Momordica charantia(as well known "bitter melon"). This study was conducted to determine antidiabetic mechanism of Bitter Melon Extract (BME). We measured blood glucose, insulin, glucagon level in a Sprague-Dawley rat model of high-fat diet/streptozotocin(HFD/STZ)-induced diabetes. Five experimental groups were used: normal, HFD/STZ, BME 62.5 mg/kg HFD/STZ, BME 125 mg/kg HFD/STZ and BME 250 mg/kg HFD/STZ. BME was orally administered to the rats every other day for 9 weeks. Results showed that fasting blood glucose levels were significantly lower in the BME 125 mg/kg(150.17 ± 20.22 mg/dL) and 250 mg/kg(124.17 ± 22.17 mg/dL) groups than in the vehicle group(188.83 ± 26.63 mg/dL)(p<0.05). In addition, glucagon levels were lower in the three BME treatment groups than in the vehicle group(p<0.05). Oral glucose tolerance tests revealed that the BME 250 mg/kg group had significantly(p<0.05) reduced 120-minute blood glucose levels and areas under the curve. Our results suggest that BME induces antidiabetic effects via the reduction of glucagon and blood glucose levels.

Effects of a Natural Medicinal Multi-plant Extract on Blood Glucose, Insulin Levels, and Serum Malondialdehyde Concentrations in Streptozotocin-induced Diabetic Rats (천연 생약 복합 추출물이 Streutozotocin 유발 당뇨성 흰쥐의 혈당 및 인슐린, 혈청 과산화지질 농도에 미치는 효과)

  • Park, Hyung-Rea;Cho, Jung-Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.2
    • /
    • pp.205-212
    • /
    • 2007
  • This study was designed to investigate a natural medicinal multi-plants extract (BG515), which consisted of multi extracts of Mori folium, Rehmannia glutinosa Liboschitz, Dioscorea japonica, Lycii fructus, and Astragalus radix, on blood glucose, insulin levels, and serum malondialdehyde (MDA) concentrations in streptozotocin-induced diabetic rats. Streptozotocin (STZ) induces a type 1 diabetes mellitus in rats. Type 1 is usually characterized by the presence of islet cell autoantibodies (ICA), autoantibodies to insulin (IAA), and autoantiboides to glutamic acid decarboxylase (GAD), which identify the autoimmune process that leads to $\beta-cell$ destruction. Thirty-five male Sprague-Dawley (SD) rats weighing $150\sim170g$ each (6 weeks old) were randomly divided into one control (Group A) and 4 STZ-induced diabetic groups, and were subjected to one of the following treatment for 12 weeks. Groups A and B were fed basal diets and Group C, D, and E received the same diets as groups A and B, but with supplements of 150 mg/kg, 300 mg/kg, and 600 mg/kg of BG515 orally for 12 weeks, respectively. Diabetes was induced in Groups B, C, D, and E by intravenous injection of 45 mg/kg of STZ per body weight in sodium citrate buffer (pH 4.5) via the tail vein. In the BG515 groups, we found increases in serum insulin levels, compared to the STZ-control group, but these data were not significant. In contrast, blood glucose and serum MDA concentrations decreased in the BG515 groups compare to the STZ-control group. At the 5th week, in all the BG515 administered groups, there were decreases in serum blood glucose levels compared to the STZ- control group, and this activity was very strong in the BG515-1 group at the 12th week. These results suggest that natural bio-complex compounds (BG515) may slightly suppress STZ-induced changes in serum MDA concentration via the maintenance of serum insulin levels, due to the prevention of $\beta-cell$ and glucagon destruction by STZ.

  • PDF

Antihyperlipidemic Activity of the Ethyl-acetate Fraction of Stereospermum Suaveolens in Streptozotocin-induced Diabetic Rats

  • Thirumalaisamy, Balasubramanian;Prabhakaran, Senthilkumar Gnanavadevel;Marimuthu, Karthikeyan;Chatterjee, Tapan Kumar
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • Objectives: Dyslipidemia in diabetes mellitus is a significant risk factor for the development of cardiovascular complications. The aim of this study was to evaluate the effect of the ethyl-acetate fraction of an ethanolic extract from Streospermum suaveolens on lipid metabolism in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced by intraperitonial injection of STZ (50 mg/kg). Diabetic rats were treated with an ethyl-acetate fraction orally at doses of 200 and 400 mg/kg daily for 14 days. On the $15^{th}$ day, serum lipid profiles, such as total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), were estimated in experimental rats. The atherogenic (AI) and the coronary risk (CRI) indices were also evaluated. Results: The ethyl-acetate fraction at doses of 200 and 400 mg/kg significantly (P < 0.001) and dose-dependently reduced serum cholesterol, triglycerides and LDL, but increased HDL towards near normal levels as compared to diabetic control rats. The fraction also significantly (P < 0.001) lowered the atherogenic index (AI) and coronary risk index (CAI) in a dose-dependent manner. Conclusion: The present study demonstrated that the ethyl-acetate fraction of Stereospermum suaveolens exhibits a potent antihyperlipidemic activity in hyperglycemic rats and suggests that the plant may have therapeutic value in treating the diabetic complication of hyperlipidemia.

Alterations in the blood glucose, serum lipids and renal oxidative stress in diabetic rats by supplementation of onion (Allium cepa. Linn)

  • Bang, Mi-Ae;Kim, Hyeon-A;Cho, Young-Ja
    • Nutrition Research and Practice
    • /
    • v.3 no.3
    • /
    • pp.242-246
    • /
    • 2009
  • This study examined the anti-diabetic effect of onion (Allium cepa. Linn) in the streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were divided into normal rats fed control diet or supplemented with onion powder (7% w/w) and diabetic rats fed control diet or supplemented with onion powder. Diabetes was induced by a single injection of STZ (60 mg/kg, ip) in citrate buffer. The animals were fed each of the experimental diet for 5 weeks. Blood glucose levels of rats supplemented with onion were lower than those of rats fed control diet in the diabetic rats. Onion also decreased the total serum lipid, triglyceride, and atherogenic index and increased HDL-cholesterol/total cholesterol ratio in the diabetic rats. Glutathione peroxidase, glutathione reductase and glutathione S-transferase activities were high in the diabetic rats compared to normal rats and reverted to near-control values by onion. These results indicate that onion decreased blood glucose, serum lipid levels and reduced renal oxidative stress in STZ-induced diabetic rats and this effect might exert the anti-diabetic effect of onion.

Oxidative and Anti-oxidative Status in Blood of Streptozotocin-induced Diabetic Piglets

  • Inoue, H.;Murakami, H.;Matsumoto, M.;Kaji, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.818-824
    • /
    • 2011
  • Eight LW${\times}$D crossbred, castrated weanling piglets were used to examine the effect of hyperglycemia by streptozotocin (STZ)-injection on oxidative and anti-oxidative status in circulating fluid. Every two of the eight piglets were intravenously administrated STZ at a dose of 0 (control), 100, 125 or 150 mg/kg BW, respectively, and on 15th day after the STZ-injection, some markers of the oxidative stress in circulating fluid were measured to evaluate oxidative and anti-oxidative status in the piglets. First, piglets with hyperglycemia were selected from the STZ-injected piglets as measured by the levels of fasting plasma glucose (FPG) during 2 weeks after the STZ-injection. Additionally, data obtained from the intravenous glucose tolerance test (IVGTT) on 14th day were analyzed. Secondly, the data obtained in this experiment were divided into the control group and the hyperglycemic (STZ) group, and compared. The FPG level or area under curve (AUC) for plasma glucose during the IVGTT in the STZ-induced diabetic piglets was slightly significantly (FPG, p = 0.070; AUC, p = 0.072) higher compared with the control. On the other hand, the plasma level of lipid peroxidation in the STZ-induced diabetic piglets was significantly (p<0.05) higher compared with the control. These results raise the possibility that STZ-induced diabetic piglets produced in this study can be used as a diabetic animal model to research the pathogenic mechanisms or therapy of complications in diabetic mellitus.

Enhanced Expression of Inducible Nitric Oxide Synthase May Be Responsible for Altered Vascular Reactivity in Streptozotocin-induced Diabetic Rats

  • Jang, Jae-Kwon;Kang, Young-Jin;Seo, Han-Geuk;Seo, Sook-Jae;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • Growing evidence indicates that enhanced generation or actions of nitric oxide (NO) are implicated in the pathogenesis of hypertension in spontaneously hypertensive rats and diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. We investigated whether inducible nitric oxide synthase (iNOS) expression in STZ-induced diabetic rats is responsible for the alterations of vascular reactivity. Diabetic state was confirmed 28 days after injection of STZ (i.p) in rats by measuring blood glucose. In order to evaluate whether short term (4 weeks) diabetic state is related with altered vascular reactivity caused by iNOS expression, isometric tension experiments were performed. In addition, plasma nitrite/nitrate (NOx) levels and expression of iNOS in the lung and aorta of control and STZ-treated rats were compared by using Griess reagent and Western analysis, respectively. Results indicated that STZ-treated rats increased the maximal contractile response of the aorta to phenylephrine (PE), and high $K^+,$ while the sensitivity remained unaltered. Endothelium-dependent relaxation, but not SNP-mediated relaxation, was reduced in STZ-treated rats. Plasma nitrite/nitrates are significantly increased in STZ-treated rats compared to controls. The malondialdehyde (MDA) contents of liver, serum, and aorta of diabetic rats were also significantly increased. Furthermore, nitrotyrosine, a specific foot print of peroxynitrite, was significantly increased in endothelial cells and smooth muscle layers in STZ-induced diabetic aorta. Taken together, the present findings indicate that enhanced release of NO by iNOS along with increased lipid peroxidation in diabetic conditions may be responsible, at least in part, for the augmented contractility, possibly through the modification of endothelial integrity or ecNOS activity of endothelium in STZ-diabetic rat aorta.

  • PDF

Biological Effect of Vaccinium uliginosum L. on STZ-induced Diabetes and Lipid Metabolism in Rats (들쭉이 약물에 의해 유도된 당뇨 및 지질대사에 미치는 생리활성 효과)

  • Han, Eun-Kyung;Kwon, Hyuck-Se;Shin, Se-Gye;Choi, Yoon-Hee;Kang, Il-Jun;Chung, Cha-Kwon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1727-1733
    • /
    • 2012
  • This study was conducted to investigate the effects of Vaccinium uliginosum L. (bilberry) on chemically induced diabetes and hypercholesterolemia. Sprague Dawley (SD) rats were divided into six groups, control (CON), bilberry added group (CBB), streptozotocin (STZ)-induced diabetic group (STZ), STZ and bilberry added group (SBB), high fat fed group (HFF) and high fat and bilberry added group (HFB). Diabetes was chemically induced by intravenous injection of 45 mg/kg body weight STZ in citrate buffer (pH 4.5). Serum triglycerides decreased significantly (p<0.05) in the STZ group that was fed bilberry. Additionally, the athrogenic index (AI) decreased significantly (p<0.05) when compared to the STZ group, while the liver triglycerides tended to decrease in the STZ group. HDL-cholesterol also increased significantly in response to bilberry. When compared to the STZ group, steady attenuation of the blood glucose level was observed upon fasting, 15 min, 30 min, 60 min and 120 min after oral glucose administration. The blood glucose level in the bilberry fed group decreased by 24% when compared to STZ group, while the superoxide dismutase (SOD) became significantly higher (p<0.05) in the STZ group when compared to the CON group. Overall, the results of this study suggest that bilberry stimulates lipid metabolism in both the serum and liver and has a positive effect on glucose metabolism in chemically induced diabetic rats.