Browse > Article
http://dx.doi.org/10.5713/ajas.2011.90527

Oxidative and Anti-oxidative Status in Blood of Streptozotocin-induced Diabetic Piglets  

Inoue, H. (Research Group of Pig Nutrition, National Agricultural Research Center for Kyushu Okinawa Region)
Murakami, H. (Research Group of Pig Nutrition, National Agricultural Research Center for Kyushu Okinawa Region)
Matsumoto, M. (Research Group of Pig Nutrition, National Agricultural Research Center for Kyushu Okinawa Region)
Kaji, Y. (National Institute of Livestock and Grassland Science)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.6, 2011 , pp. 818-824 More about this Journal
Abstract
Eight LW${\times}$D crossbred, castrated weanling piglets were used to examine the effect of hyperglycemia by streptozotocin (STZ)-injection on oxidative and anti-oxidative status in circulating fluid. Every two of the eight piglets were intravenously administrated STZ at a dose of 0 (control), 100, 125 or 150 mg/kg BW, respectively, and on 15th day after the STZ-injection, some markers of the oxidative stress in circulating fluid were measured to evaluate oxidative and anti-oxidative status in the piglets. First, piglets with hyperglycemia were selected from the STZ-injected piglets as measured by the levels of fasting plasma glucose (FPG) during 2 weeks after the STZ-injection. Additionally, data obtained from the intravenous glucose tolerance test (IVGTT) on 14th day were analyzed. Secondly, the data obtained in this experiment were divided into the control group and the hyperglycemic (STZ) group, and compared. The FPG level or area under curve (AUC) for plasma glucose during the IVGTT in the STZ-induced diabetic piglets was slightly significantly (FPG, p = 0.070; AUC, p = 0.072) higher compared with the control. On the other hand, the plasma level of lipid peroxidation in the STZ-induced diabetic piglets was significantly (p<0.05) higher compared with the control. These results raise the possibility that STZ-induced diabetic piglets produced in this study can be used as a diabetic animal model to research the pathogenic mechanisms or therapy of complications in diabetic mellitus.
Keywords
Diabetes; Oxidative Stress Marker; Piglet; Streptozotocin;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Opara, E. C., E. Abdel-Rahman, S. Soliman, W. A. Kamel, S. Souka, J. E. Lowe and S. Abdel-Aleem. 1999. Depletion of total antioxidant capacity in type 2 diabetes. Metab. 48:1414-1417.   DOI   ScienceOn
2 Park, K. S., J. H. Kim, M. S. Kim, J. M. Kim, S. K. Kim, J. Y. Choi, M. H. Chung, B. Han, S. Y. Kim and H. K. Lee. 2001. Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes 50:2837-2841.   DOI   ScienceOn
3 Ravin, H. A. 1961. An improved colorimetric enzymatic assay of ceruloplasmin. J. Lab. Clin. Med. 58:161-168.
4 Childs, R. E. and W. G. Bardsley. 1975. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 147:93-103.
5 Desco, M., M. Asensi, R. Márquez, J. Martínez-Valls, M. Vento, F. V. Pallardó, J. Sastre and J. Vina. 2002. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes 51:1118-1124.   DOI   ScienceOn
6 Dyson, M. C., M. Alloosh, J. P. Vuchetich, E. A. Mokelke and M. Sturek. 2006. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp. Med. 56:35-45.
7 Ellman, G. L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82:70-77.   DOI   ScienceOn
8 Gallou, G., A. Ruelland, L. Campion, D. Maugendre, N. Le Moullec, B. Legras, H. Allannic and L. Cloarec. 1994. Increase in thiobarbituric acid-reactive substances and vascular complications in type 2 diabetes mellitus. Diabetes Metab. 20: 258-264.
9 Hall, D. M., G. R. Buettner, R. D. Matthes and C. V. Gisolfi. 1994. Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of .NO-heme in blood. J. Appl. Physiol. 77:548-553.
10 Hall, D. M., T. D. Oberley, P. M. Moseley, G. R. Buettner, L. W. Oberley, R. Weindruch and K. C. Kregel. 2000. Calorie restriction improves thermotolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J. 14:78-86.
11 Inoue, H., M. Watanuki, H. T. Myint, T. Ito, H. Kuwayama and H. Hidari. 2005. Effects of fasting and refeeding on plasma concentrations of leptin, ghrelin, insulin, growth hormone and metabolites in swine. Anim. Sci. J. 76:367-374.   DOI   ScienceOn
12 Jiang, Z.-Y., J. V. Hunt and S. P. Wolff. 1992. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202:384-389.   DOI
13 Ceriello, A., N. Bortolotti, M. Pirisi, A. Crescentini, L. Tonutti, E. Motz, A. Russo, R. Giacomello, G. Stel and C. Taboga. 1997. Total plasma antioxidant capacity predicts thrombosis -prone status in NIDDM patients. Diabetes Care 20:1589-1593.   DOI   ScienceOn
14 Anwar, M. M. and A. M. A. Meki. 2003. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp. Biochem. Physiol. Part A 135:539-547.
15 Brownlee, M. 2005. The pathobiology of diabetic complications. Diabetes 54:1615-1625.   DOI   ScienceOn
16 Bonnefont-Rousselot, D., J. P. Bastard, M. C. Jaudon and J. Delattre. 2000. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab. 26:163-176.
17 Tsai, E. C., I. B. Hirsch, J. D. Brunzell and A. Chait. 1994. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 43:1010-1014.   DOI   ScienceOn
18 Sacks, D. V., D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald and M. Parrott. 2002. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem. 48:436-472.
19 Statistical Analysis Systems (SAS). 1988. SAS/STAT User's Guide, release 6.03. Cary NC: SAS Institute.
20 Szkudelski, T. 2001. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50: 536-546.
21 Weiss, S. J. 1986. Oxygen, ischemia and inflammation. Acta Physiol. Scand. Suppl. 548:9-37.
22 Yagi, K. 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med. 15:212-216.   DOI   ScienceOn
23 Young, I. S., S. Tate, J. H. Lightbody, D. McMaster and E. R. Trimble. 1995. The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic. Biol. Med. 18:833-840.   DOI   ScienceOn
24 Mujahid, A., Y. Akiba, C. H. Warden and M. Toyomizu. 2007. Sequential changes in superoxide production, anion carriers and substrate oxidation in skeletal muscle mitochondria of heat-stressed chickens. FEBS Lett. 581:3461-3467.   DOI   ScienceOn
25 Korompai, F. L., E. Ustinova, A. C. Taulman and S. Y. Yuan. 2000. Ammonium chloride potentiation of streptozotocin-induced diabetes in juvenile pigs. Horm. Metab. Res. 32:256-258.   DOI   ScienceOn
26 Larsen, M. O. and B. Rolin. 2004. Use of the gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 45:303-313.   DOI   ScienceOn
27 Lin, H., D. De Vos, E. Decuypere and J. Buyse. 2008. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hen (Gallus gallus domesticus). Comp. Biochem. Physiol. Part C. 147:30-35.
28 Murakami, H., M. Matsumoto, H. Inoue and Y. Kaji. 2007. Digestive enzyme activities of pancreas and intestinal digesta in streptozotocin-induced diabetic piglets. Anim. Sci. J. 78:55-60.   DOI   ScienceOn
29 Nourooz-Zadeh, J., J. Tajaddini-Sarmadi, S. McCarthy, D. J. Betteridge and S. P. Wolff. 1995. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44:1054-1058.   DOI   ScienceOn
30 Oberley, L. W. 1988. Free radicals and diabetes. Free Radic. Biol. Med. 5:113-124.   DOI   ScienceOn