• Title/Summary/Keyword: STRAIN

Search Result 22,039, Processing Time 0.039 seconds

Isolation and Characterization of Prophage cured strain derivatives from Lactobacillus casei YIT 9018 (Lactobacillus casei YIT 9018로부터 Prophage cured strain의 분리 및 특성)

  • 이정준;김경태;백영진
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.215-220
    • /
    • 1990
  • Prophage cured strain derivatives from Luctobacillirs araei YIT 9018 were isolated from thermoinducible mutant of the parent lysogenic strain. Two thermoinducible mutants were isolated from L. casei YIT 9018 strain treated with N-methyl-N'-nitro-N-nitrosoguanidine. Prophage cured strains were selected after heat induction of thermoinducible strains at $42^{\circ}C$ for 30 min in MRT medium containing anti- 4 FSV serum. The prophage cured strains, L. casei HYM 1213 and L. casei HYM 4024, could be used an indicator strain for temperate phage $\phi$ FSW. The growth, lactic acid producing ability and carbohydrates fermentation of L. casei HYM 1213 were similar to the parent L. cmei YIT 9018 strain, but A. casei HYM 4024 was not. One of the prophage cured strain, L. cmei HYM 1213, could be used industrially .to produce lactic acid beverages because this strah could not induce the virulent phage$\phi$FSV. The physiological characterization of L. casei HYM 1213 strain was similar to the parent L. casei YIT 9018 strain.

  • PDF

A Study of the Influence of Strain Gauge Location and Contact Conditions by Loading Platens on the Mechanical Behavior of Rock Specimens (암석공시체의 역학적 거동 해석에 미치는 변형율게이지 위치 및 단면구속 영향에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 1998
  • In this study, total strain was measured by LVDTs and local strains on the surface of specimens were measured by strain gauges. And axi-symmetrically elastoplastic FEM analyses was carried out for cylindrical specimens. Considering the influence of the restraint induced by the loading platen, in the case of H/D=1, the strain distribution on the side of a specimen is obviously affected by the condition of platen contact. Furthermore, it is clear that the larger H/D ratio becomes, the smaller the influence to the strain distribution is. For the smooth contact condition, the strain on the side is not influenced by the stiffness of the specimen, the shape and the scale effect, the strain distribution coincides with the nominal total strain. Whereas, in the case of rough contact condition, the strain distribution is remarkably affected. It is made clear that strain responses of hard rock specimens may more sensitive than these of soft rock specimens as a results of interaction between loading platens and specimen and the uniaxial strength of specimens may strongly depends on this interaction and stress-strain relation is affected by the contact condition.

  • PDF

Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method (변형률분할법에 의한 12Cr 단조강의 열피로 수명예측)

  • 하정수;옹장우;고승기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

Cloning and Nucleotide Sequence Analysis of the rpoH Gene from Methylovorus sp. Strain SS1 DSM11726 (Methylovorus sp. Strain SS1 DSM11726으로부터 rpoH 유전자의 클로닝과 염기서열 분석)

  • Eom, Chi-Yong;Song, Seung-Eun;Park, Mi-Hwa;Kim, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Using complementation of RpoH deficient E. coli strain A7448, the rpoH gene encoding heat shock sigma factor 32 (${\sigma}^{32}$) from Methylovorus sp. strain SS1 DSM11726 was cloned and sequenced. Sequence analysis of a stretch of 1,796-bp revealed existence of an open reading frame encoding a polypeptide of 284 amino acid (32,006 dalton). Deduced amino acid sequence of the Methylovorus sp. strain SS1 RpoH showed that 59.6%, 39.1% and 51.4% identities with those of Nitrosomonas europaea (${\beta}$-proteobacteria), Agrobacterium tumefaciens ($\alpha$-proteobacteria) and E. coli (${\gamma}$-proteobacteria). The expression level of the functional ortholog of RpoH of Methylovorus sp. strain SS1 was increased transiently after heat induction, further indicating that it functions as a heat shock sigma factor.

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests- (응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition (평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6391-6396
    • /
    • 2015
  • In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

Influence of ITO Thickness on the Deformation and Cracking Behaviors of ITO/PET Sheets (ITO층의 두께에 따른 ITO/PET sheet의 변형거동 및 균열 형성 거동)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, the stress-strain response and the cracking behaviors of ITO film on a PET substrate are investigated. The cracking behaviors of ITO thin films deposited on a thermoplastic semi-crystalline polymer developed for flexible display applications was investigated by means of tensile experiments equipped with an electrical measurement apparatus and an in-situ optical microscope. Electrical resistance increased gradually in the elastic-to-plastic transition region of the stress strain curves and cracks formed. Numerous cracks were found in this region, and the increase of the resistance was linked to the cracking of ITO thin films. Upon loading, the initial cracks perpendicular to the tensile axis were observed at about 1% of the total strain. They propagated to the entire sample width as the strain increased. The spacing between the horizontal cracks is thought to be determined by the fracture strength and the thickness of the ITO film as well as by the interfacial strength between the ITO and PET. The effect of the strain rate on the cracking behavior was also investigated. The crack density increased as the strain increased. The spacing between the horizontal cracks (perpendicular to the stress axis) increased as the strain rate decreased. The increase of the crack density as the strain rate decreased can be attributed to the higher fraction of the plastic strain to the total strain at a given total strain. The higher critical strain for the onset of the increase in the resistance and the crack initiation of the ITO/PET with a thinner ITO film (300 ohms/sq.) suggests a higher strength of the thinner ITO film.

A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy (Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2011
  • The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

Comparison of Karasek's Job Content Questionnaire and Korea Occupational Stress Scale (Karasek의 Job Content Questionnaire와 Korea Occupational Stress Scale의 비교 연구)

  • Lee, Jong-Bin;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • According to the report of the WHO, workers have been exposed to much job strain such as job load, responsibility, role, interpersonal conflict etc. In Korea, studies on job strain started to become active from 1990s and now hundreds of studies are actively under going or publishing so that the studies are contributing to development and improvement of job strain. Representative measurement models of job strain are Job Strain Model of Karasek, Job Stress Model of NOISH, Korea Occupational Stress Scale, JSQ(Job Stress Questionnaire), K-OSI(Korea Version of Occupational Stress Inventory) etc. (Lee Kwan-Suk, 2012 ; KOSHA, 2003). Among them, Job Strain Model of Karasek had been loved by many researchers of job strain before Korea Occupational Stress Scale was developed. Job Strain Model of Karasek had been fitted to Korean style and then, used to analyze job strain of Korean people so that this Scale highly contributed to seeking relationship with cardiovascular disease, musculoskeletal disease caused by job, smoking, drug, alcohol poisoning, and pulse(Lee Kwan-Suk, 2012). But as this Model was studied and developed based on foreign culture and life pattern, a model fit to Korea was developed to measure job strain for Korean people, which is Korea Occupational Stress Scale now most frequently used in measuring job strain. Accordingly, after this study made questionnaire survey about same population using the two methods used most frequently in measuring job strain, the study investigated what features appeared, what correlations appear between two models, and comparatively analyzed characteristics each independent and dependent variable. Based on this, the study aimed to exactly express job strain of Korean people. The subjects of the study were a population of 233, and Karasek's Questionnaire and KOSS's Questionnaire were surveyed at the same time. The results were analyzed by statistical program to obtain significant difference between two models. Four particular groups were divided with Job Strain Model of Karasek and the four particular groups were measured with Korea Occupational Stress Scale. And job strain come from combination of two models was measured, with which new comparative analysis method was suggested.