Browse > Article

Cloning and Nucleotide Sequence Analysis of the rpoH Gene from Methylovorus sp. Strain SS1 DSM11726  

Eom, Chi-Yong (Metabolome Analysis Team, Korea Basic Science Institute (KBSI))
Song, Seung-Eun (Metabolome Analysis Team, Korea Basic Science Institute (KBSI))
Park, Mi-Hwa (Metabolome Analysis Team, Korea Basic Science Institute (KBSI))
Kim, Young-Min (Department of Biology, College of Science, Yonsei University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.3, 2007 , pp. 177-183 More about this Journal
Abstract
Using complementation of RpoH deficient E. coli strain A7448, the rpoH gene encoding heat shock sigma factor 32 (${\sigma}^{32}$) from Methylovorus sp. strain SS1 DSM11726 was cloned and sequenced. Sequence analysis of a stretch of 1,796-bp revealed existence of an open reading frame encoding a polypeptide of 284 amino acid (32,006 dalton). Deduced amino acid sequence of the Methylovorus sp. strain SS1 RpoH showed that 59.6%, 39.1% and 51.4% identities with those of Nitrosomonas europaea (${\beta}$-proteobacteria), Agrobacterium tumefaciens ($\alpha$-proteobacteria) and E. coli (${\gamma}$-proteobacteria). The expression level of the functional ortholog of RpoH of Methylovorus sp. strain SS1 was increased transiently after heat induction, further indicating that it functions as a heat shock sigma factor.
Keywords
rpoH; Methylovorus; heat shock; sigma factor;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Bukau, B. 1993. Regulation of the Escherichia coli heatshock response. Mol. Microbiol. 9: 671-680   DOI   ScienceOn
2 Eom, C. Y, E. Kim, Y. T. Ro, S. W. Kim, and Y M. Kim. 2005. Cloning and molecular characterization of groESL heat-shock operon in a methylotrophic bacterium Methylovarus sp. strain SS I DSM 11726. J. Biochem. Mol. Biol. 38: 695-702   PUBMED
3 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580   DOI
4 Nagai, H., H. Yuzawa, M. Kanemori, and T. Yura. 1994. A distinct segment of the ${\sigma}^{32}$ polypeptide is involved in DnaKmediated negative control of the heat shock response in Escherichia coli. Proc. Natl. Acad. Sci. USA 91: 10280- 10284
5 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbour Laboratory, Cold Spring harbour. NY
6 Sprengart, M. L., H. P. Fatscher, and E. Fuchs. 1990. The initiation of translation in E. coli: apparent base pairing between the 16S rRNA and downstream sequences of the mRNA. Nucleic Acids Res. 18: 1719-1723   DOI
7 Straus, D. B., W. A. Walter, and C. A. Gross. 1989. The activity of ${\sigma}^{32}$ is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3: 2003-2010   DOI
8 Zhou, Y. -N., N. Kusukawa, J. W. Erickson, C. A. Gross, and T. Yura. 1988. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor ${\sigma}^{32}$. J. Bacteriol. 170: 3640-3649   DOI   PUBMED
9 Gamer, J., G Multhaup, T. Tomoyasu, J. S. McCarty, S. Rudiger, H. J. Schonfeld, C. Schirra, H. Bujard, and 8. Bukau. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor ${\sigma}^{32}$. EMBO J. 15: 607-617   PUBMED
10 Gross, C. A., D. B. Straus, J. W. Erickson, and T. Yura. 1990. The function and regulation of heat shock proteins in Escherichia coli. In: Morimoto, R. I, A. Tissires and C. Georgopoulos (eds): Stress proteins in biology and medicine, Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 167-189
11 Nagai, H., H. Yuzawa, and T. Yura. 1991. Interplay of two cis-acting mRNA regions in translational control of ${\sigma}^{32}$ synthesis during the heat shock response of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 10515- 10519
12 Eom, C. Y, S. T. Park, E. Kim, Y. T. Ro, S. W. Kim and Y M. Kim. 2002. Cloning, molecular characterization, and transcriptional analysis of dnaK operon in a methylotrophic bacterium Methylovorus sp. strain SSI DSM 11726. Mol. Cells. 14: 245-254   PUBMED
13 LaemmIi, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
14 Yamarnori, T., and T. Yura. 1982. Genetic control of heatshock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 79: 860-864
15 Schumann, W. 1996. Regulation of the heat shock response in Escherichia coli and Bacillus subtilis. J. Biosci. 21: 133-148   DOI
16 Morimoto, R. I., A. Tissires, and C. Georgopoulos. 1994. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press. New York. Cold Spring Harbor. pp 610
17 Yura, T., H. Nagai, and H. Mori. 1993. Regulation of the heat-shock response in bacteria. Annu. Rev. Microbiol. 47: 321-350   DOI   ScienceOn
18 Tilly, K., J. Spence, and C. Georgopoulos. 1989. Modulation of stability of the Escherichia coli heat shock regulatory factor ${\sigma}^{32}$. J Bacteriol. 171: 1585-1589   DOI   PUBMED
19 Bibb, M. J., P. R. Findlay, and M. W. Johnson. 1984. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30: 157-16   DOI   ScienceOn
20 Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127-6145   DOI
21 Lidstrom, M. E. and Stirling, D, I. 1990. Methylotrophs: genetics and commercial applications. Annu. Rev. Microbiol. 44: 27-58   DOI   ScienceOn
22 Straus, D. B., W. A. Walter, and C. A. Gross. 1987. The heat shock response of E. coli is regulated by changes in the concentration of ${\sigma}^{32}$. Nature 329: 348-351   DOI   ScienceOn
23 Yuzawa, H., H. Nagai, H. Mori, and T. Yura. 1993. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 21: 5449-5455   DOI
24 Benvenisti, L., S. Koby, A. Rutman, H. Giladi, T. Yura, and A. B. Oppenheim. 1995. Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa. Gene 155: 73-76   DOI   ScienceOn
25 Wsten, M. M. 1998. Eubacterial sigma-factors. FEMS Microbiol. Rev. 22: 127-150   DOI   ScienceOn
26 Georgopoulos, C., K. Liberek, M. ZyIicz, and D. Ang. 1994. Properties of heat shock proteins of Escherichia coli. and the autoregulation of the heat shock response. In: Morimoto, R. I., A. Tissires and C. Georgopoulos (eds): The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 209-249
27 Goldberg, J. B., and D. E. Ohman. 1984. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J. Bacteriol. 158:1115-1121   PUBMED
28 Grossman, A. D., D. B. Strauss, W. A. Walter, and C. A. Gross. 1987. ${\sigma}^{32}$ synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1: 179-184   DOI