DOI QR코드

DOI QR Code

A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy

Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구

  • Oh, Chang-Sup (Korea Institute of Science and Technology Information, Reseat Program) ;
  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
  • 오창섭 (한국과학기술정보연구원) ;
  • 한창석 (호서대학교 국방과학기술학과)
  • Received : 2011.08.30
  • Accepted : 2011.10.04
  • Published : 2011.11.30

Abstract

The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

Keywords

References

  1. Y. L. Zhang, H. P. Guo and Z. Q. Li : Adv. Mat. & Manuf. Proc. 2011, (2011) 434.
  2. X. M. Zhang, D. W. Zheng and L. Y. Ye : J. Central South University of Technology, 17 (2010) 659. https://doi.org/10.1007/s11771-010-0537-x
  3. Z. Xinming, Y. Lingying and Z. Dawei : Aero. Manuf. Tech., 10 (2009) 82.
  4. V. Rajendran, S. M. Kumaran and T. Jayakumar : J. Alloys and Compounds, 478 (2009) 147. https://doi.org/10.1016/j.jallcom.2008.11.067
  5. J. M. Silcock : J. Inst. Met., 88 (1959) 359.
  6. S. Giribaskar, Gouthama and R. Prasad : Materials Science Forum, 584/586 (2008) 411. https://doi.org/10.4028/www.scientific.net/MSF.584-586.411
  7. M. Tamura, T. Mori and T. Nakamura : Trans. JIM, 14 (1983) 423.
  8. B. Noble, S. J. Harris and K. Dinsdale : J. Mat. Sci., 17 (1982) 461. https://doi.org/10.1007/BF00591481
  9. Y. S. Choi, D. M. Dimiduk and M. D. Uchic : Phil. Mag., 87 (2007) 4759. https://doi.org/10.1080/14786430701589368
  10. S. M. L. Sastry and R. N. Mahapatra : Mat. Sci. & Eng., 329/331 (2002) 872. https://doi.org/10.1016/S0921-5093(01)01644-6
  11. E. Orowan : Sympo. Internal Stresses in Metals, Institute of Metals, London, (1948) 451.
  12. G. R. Leverant and K. S. Chan : Metall. Trans. A, 18 (1987) 593. https://doi.org/10.1007/BF02649475
  13. P. H. Davies and R. S. W. Shewfelt : ASTM special technical publication, 1295 (1996) 492.
  14. P. B. Hirsch, R. W. Horne and M. J. Whelan : Phil. Mag., 86 (2006) 4553. https://doi.org/10.1080/14786430600844674
  15. L. M. Brown and R. K. Ham : Strengthening Methods in Crystals, Ed. by. A. Kelly and R. B. Nicholson, Elsevier, (1971) 9.
  16. R. S. W. Shewfelt and L. M. Brown : Phil. Mag., 35 (1977) 945. https://doi.org/10.1080/14786437708232636