• Title/Summary/Keyword: STEAM 수업

Search Result 169, Processing Time 0.029 seconds

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

Exploring Teachers' Perceptions of Computational Thinking Embedded in Professional Development Program (컴퓨팅 사고를 반영한 교사연수 과정에서 나타난 교사의 인식 탐색)

  • Hwang, Gyu Jin;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.344-364
    • /
    • 2021
  • The study explored how two elementary school teachers perceived computational thinking, reflected them into curriculum revision, and taught them in the classroom during longitudinal professional developed program (PDP) for nine months. Computational thinking is a new direction in educational policy-making including science education; therefore we planned to investigate participating teachers' perception of computational thinking to provide their fundamental understandings. Nine meetings, lasting about two hours each, were held with the participating teachers and they developed 11 lesson plans for one unit each, as they formed new understandings about computational thinking. Data were collected through PDP program while two teachers started perceiving computational thinking, revising their curriculum, and implementing it into their class for nine months. The results were as follows; first, elementary school teachers' perception of computational thinking was that the definition of scientific literacy as the purpose of science education was extended, i.e., it refers to scientific literacy to prepare students to be creative problem solvers. Second, STEAM (science, technology, engineering, arts, and mathematics) lessons were divided into two stages; concept formation stage where scientific thinking is emphasized, and concept application, where computational thinking is emphasized. Thirdly, computational thinking is a cognitive thinking process, and ICT (informational and communications technology) is a functional tool. Fourth, computational thinking components appear repeatedly and may not be sequential. Finally, STEAM education can be improved by utilizing computational thinking. Based on this study, we imply that STEAM education can be activated by computational thinking when teachers are equipped with competencies of understanding and implementing computational thinking within the systematic PDPs, which is very essential for newly policies.

A Study of STEAM Education for Elementary Science Subject with Robots (교육용 로봇을 활용한 초등학교 과학교과의 STEAM교육 수업 방안)

  • Hong, Ki-Cheon;Shim, Jae-Kuk
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.1
    • /
    • pp.83-91
    • /
    • 2013
  • The Ministry of Education issues STEAM education as a part of convergence. Most important is "How to achieve goals of STEAM education". The goal of this paper searches possibilities that robot is a good tool for STEAM education. The main topic is photosynthesis unit as circumstantiation and "Deep sea exploration robot", is creative activity, in elementary science subject. Students complete 13 basic course about robot, then accomplish subject-oriented 10 robot application course about above topic. Basic course contains math and science elements that students learn in regular curriculum. Application course is organized following steps, photosynthesis with oxygen sensors, brainstorming, idea derivation, robot design, robot construction, demo and presentation and so on. These courses have elements of STEAM. Finally teacher has face-to-face meeting with parents and students. Most have positive aspects about this process in terms of creativity, study attitude, and school life. Specially low-ranking students win a prize in robot competition. So they can gain confidence and accomplishment. This paper don't show statistic chart, but we surely knew that robot education for STEAM education seriously affect creativity huminity and job search.

  • PDF

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

Development of hands-on activities of STEAM for 'Manufacturing Technology and Automation' unit Technology subject in Middle school (중학교 기술교과 '제조기술과 자동화' 단원을 위한 STEAM 체험활동 과제 개발)

  • Jung, Jin-Woo;Yi, Sang-Bong
    • 대한공업교육학회지
    • /
    • v.39 no.1
    • /
    • pp.66-84
    • /
    • 2014
  • The purpose of this study is to develop STEAM hand-on activity task for middle school manufacturing & automation unit. This study was conducted following three stages. First of all, I carried out documents research and requirements analysis. And the goals for STEAM hand-on activity were set at this stage. Second, topics for STEAM hand-on activity were selected, and the organized for designing hand-on activity related STEAM in the development step. Finally, pilot and field test were conducted in order to amend and/or complement in improvement step. The theme and/or title of the hand-on activities were 'Making the print using wood', 'Making the close up photography & telephoto lens for smart phone'. The STEAM hand-on activities were designed for ten hours for each subject respectively. Each hand-on activity consists of problem situation, objectives statement, materials and tools, an evaluating criteria, related knowledge, portfolio and so on.

A Case Study on a Learner-centered Class Analysis - Focus on STEAM Lesson in Elementary School - (학습자 중심의 수업 분석 사례 연구 - 초등학교 STEAM 수업을 중심으로 -)

  • Jung, Kyunghwa;Shin, Youngjoon
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.3
    • /
    • pp.254-266
    • /
    • 2018
  • The aim of this study is to analyze STEAM lessons focused on the learner's learning. This study was conducted on 4th-graders in Y city, Kyung-gi province. The lessons were based on a joint teaching plan for students through the teacher learning community (TLC) with three teachers from the same school. Each of the three classes that conducted the class was selected and analyzed as the main center of observation by three students. The conclusions from this study are as follows: First, we identified that different levels of learners are learning in STEAM lessons through a learner-centered class analysis. Some students arrived on their own by taking the initiative in class, others by consulting with a group of friends, and others needed active teacher guidance to learn. Second, Depending on the level and characteristics of the students, some learning criteria were not reached. Some students need guidance at a glance level, and others need individually instructed or guided activities. Teachers need to keep an eye out for students and give them an appropriate level of guidance during class. In STEAM lessons, it appears that students of different levels and characteristics can immerse themselves in their own way, as well as the clear guidance of activity for their students.

Development of STEAM Instructional Materials using Arduino for Creative Engineering Design Class in High Schools and Its Application (일반계고의 창의공학설계 수업을 위한 아두이노 기반 STEAM 수업자료 개발과 적용)

  • Lee, Dae-Seok;Lim, Yeong-Dae;Kim, Jinsoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2020
  • The purpose of the study was to develop the Arduino based STEAM instruction materials for creative engineering design class. PDIE model was used in this study. We developed a STEAM lesson plan and a STEAM lesson worksheet for a total of six sessions through the steps of preparation, development, implementation and evaluation. The validity of the instruction materials was evaluated by the 10 experts using a survey. The instruction materials were applied to the class (52 students attended) of the creative engineering designs unit in technology and home economics subject. The class satisfaction and the creative solving-problem ability were examined after the calss. The class satafacition was high as the average of 10 item was 4.57 (out of 5). The paired t-test was conducted to compare the means of the creative solving-problem ability. It was observed that 'understanding and mastery of knowledge, thought, function and skills in a specific domain', 'divergent thinking', 'critical and logical thinking' and ' motivational factors' were significantly increased after the class. The instruction materials develped in this study were successfully designed to enhance the creative solving-problem ability by designing creative tasks and to intrique the interest by adding visual and auditory stimuli with the Arduino.

Development and Application of the STEAM Teaching-Learning Program in 'Earth & Moon' Unit for Science Gifted Elementary School Students (초등과학영재를 위한 '지구와 달' 단원의 STEAM 교수·학습 프로그램 개발 및 적용)

  • Jeong, Sang Yun;Sohn, Jungjoo
    • Journal of Science Education
    • /
    • v.37 no.2
    • /
    • pp.359-373
    • /
    • 2013
  • This study is aimed to find out the effect after the development and application of the STEAM teaching-learning program for science gifted elementary school students. The validity of the developed program was verified by three experts. The program consists of a total of eight classes and eight days were carried out. Recorded lessons, class observation journal, and recorded interview transcription data were measured and then analyzed the effect. 'Present situation' is a very important step was confirmed. The degree of understanding of a given situation affected to task commitment, the formation of scientific concepts, creative design and deliverable.

  • PDF

Effects of Astronomical STEAM Program Using Co-teaching on Self-Directed Learning Attitude of Elementary Science Gifted Students (천문 STEAM 프로그램에서 코티칭의 활용이 초등과학 영재학생의 자기주도적 학습 태도에 미치는 효과)

  • Son, Jun Ho;Kim, Jonghee;Kim, Young Gon
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.572-584
    • /
    • 2014
  • The purpose of this study was to find out the effects of astronomical STEAM program using co-teaching on self-directed learning attitude. For this purpose, we developed an astronomical STEAM program and applied it to elementary science gifted students. Thirty six, $5^{th}$ and $6^{th}$ grade elementary science gifted students were participated in this study in total having 16 students in experimental group and 20 students in control group. The results were described as follows. First, astronomical STEAM program using co-teaching was effective in improving self-directed learning attitude. Second, the program was effective in improving participants' openness to learning opportunities and problem-solving. Third, students were satisfied with the co-teaching that provided ample feedbacks and detailed explanations, and teachers perceived that co-teaching was helpful to overcome a lack of professional knowledge, and to solve difficulties of evaluation and preparing teaching materials for STEAM classes. With findings, we discussed implications for co-teaching of STEAM lessons to improve students' self-directed learning attitude at the end of paper.