• 제목/요약/키워드: SST k-${\varepsilon}$ turbulence model

검색결과 25건 처리시간 0.02초

초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정 (Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow)

  • 감호동;김정수
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.18-25
    • /
    • 2013
  • 초음속 축소-확대 노즐 유동을 정확하게 해석하기 위하여, 실험치와 해석값 사이의 비교를 통해 난류모델 성능평가를 수행한다. Boussinesq 가정을 적용한 RANS 방정식으로 2차원 노즐 유동을 해석하되, Spalart-Allmaras, RNG k-${\varepsilon}$, 그리고 k-${\omega}$ SST 난류모델을 평가에 사용한다. 각 모델들로 계산된 노즐 벽면의 압력구배 및 충격파 구조는 실험 데이터와 유사한 결과를 보였는데, 그 중에서도 SST 난류모델이 실험값에 가장 근접한 해석결과를 나타내었다.

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng;Li, Yongle;Cai, C.S.;Liao, Haili;Xu, G.J.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.87-105
    • /
    • 2013
  • Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.

고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의 (Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel)

  • 이승규;백중철
    • 한국수자원학회논문집
    • /
    • 제50권2호
    • /
    • pp.89-97
    • /
    • 2017
  • 만곡수로에서의 흐름 구조는 나선형 운동을 갖는 이차 재순환 흐름 그리고 만곡부 측벽으로부터 발생하는 흐름분리로 인한 전단층 등으로 복잡하다. 이 연구에서는 3개의 통계학적 난류모형($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST) 그리고 자유수면 변동 해석을 위한 VOF 기법을 적용한 비정상 Reynolds-averaged Navier-Stokes (RANS) 계산을 수행하여 고진폭 만곡수로인 키노시타(Kinoshita) 수로에서의 이차류와 편수위를 해석하였다. 2차 정확도의 유한체적법을 이용하여 구한 해석결과를 기존 수리실험 자료와 비교하여 각 난류모형의 적용성을 평가하였다. 비정상 RANS 계산에서 적용한 3개의 통계학적 난류모형의 해석 결과를 분석해 보면 키노시타 수로에서 발생하는 만곡부 편수위는 3개 모형 모두 유사하게 모의하는 한편, 전반적인 이차류 분포는 $k-{\omega}$ SST상대적으로 잘 모의하는 것으로 나타났다. 하류에 위치한 만곡부 흐름에 영향을 미쳐 국부적으로 발생한 이차류와 이전의 만곡부 중앙 수면 부근에서 발생하는 한 쌍의 이차 와류가 존재하는 현상을 관측하였으며, $k-{\omega}$ SST 난류모형은 이러한 복잡한 와류 변화를 양호하게 모의했다. $k-{\varepsilon}$ 모형을 기반으로 개발된 두 모형으로 모의한 결과에서는 실험에서 관측된 중앙 만곡부에 존재하는 두 개의 이차류 중, 시계방향 와류가 재현되지 않는다. VOF기법을 이용해서 계산한 만곡부에서의 편수위 해석결과는 적용한 모든 난류모형에 대해서 전반적으로 실험값을 양호하게 재현하는 것으로 나타났다.

큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향 (Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow)

  • 허준영;정준영;성홍계;양준서;이지형
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.61-69
    • /
    • 2013
  • 핀틀 움직임에 의해 발생되는 큰 유동박리에 대해 적합한 2-방정식 난류모델의 압축성계수 보정모델을 판단하기 위하여 수치적 연구를 수행하였다. 난류모델은 저 레이놀즈수 k-${\varepsilon}$ 모델과 k-${\omega}$ SST 모델에 압축성 보정 모델(Wilcox와 Sarkar 모델)을 적용하여, 핀틀 노즐의 세부유동장을 관찰하고 노즐 벽면에서의 압력을 실험데이터와 비교 분석하였다. 마하디스크(Mach disk)의 위치와 박리영역에서의 압력 회복 형태는 난류모델에 따라 다르게 나타났으며, 각 난류모델에 압축성 보정을 적용하여 유동 박리 포획의 정확도를 개선하였다. 압축성이 보정된 k-${\varepsilon}$ 모델이 실험결과와 매우 잘 일치하였다.

강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가 (Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle)

  • 이주용;신준수;성홍계
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.40-47
    • /
    • 2018
  • 초음속 수축-확대 사각 노즐 내 강한 유동 박리를 동반한 초음속 유동에 적합한 난류 모델과 압축성 보정 모델을 평가하였다. 난류 모델로는 Yang과 Shih의 Low-Re $k-{\varepsilon}$ 모델, Menter의 $k-{\omega}$ SST모델, Wilcox의 $k-{\omega}$ 모델을 평가하였다. 압축성 효과를 보다 정확하게 예측하기 위하여 각각의 난류 모델에 Sarkar와 Wilcox의 압축성 보정 모델을 적용하였다. 각 난류 모델과 압축성 보정 모델의 결과는 실험 데이터와 비교하여 분석을 하였다. 난류 모델에 따라 충격파의 위치와 압력 회복률이 다르게 나타났으나 압축성 보정을 통해 더욱 개선된 결과를 얻었다.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

사각형 광정위어를 통과하는 자유수면 흐름 수치모의 (Numerical Modeling of Free Surface Flow over a Broad-Crested Rectangular Weir)

  • 백중철;이남주
    • 한국수자원학회논문집
    • /
    • 제48권4호
    • /
    • pp.281-290
    • /
    • 2015
  • 표준 k-${\varepsilon}$, RNG k-${\omega}$ 그리고 k-${\omega}$ SST 난류 모형과 VOF (volume of fluid)기법을 이용하여 사각형 광정위어를 통과하는 난류 흐름의 수면 변화와 유속분포를 수치모의 하였다. 지배방정식은 2차 정확도의 유한체적기법을 이용하여 해석하였으며, 두 개의 서로 다른 격자해상도에서 계산을 수행하여 수치해석 결과의 격자 민감도를 분석하였다. 계산 결과를 Kirkgoz et al. (2008)의 실험 결과 그리고 Moss (1972) 및 Zachoval et al. (2012) 무차원화된 실험값과 비교 분석하여 적용한 수치모형의 정확도를 평가하였다. 수치모의 결과는 사각형 개수로에 설치된 광정위어 흐름의 실험결과들을 합리적으로 예측하고 있으면 적용한 난류모형에 따라서 두 개의 주요 흐름분리 영역에서 계산 결과에 차이가 있는 것으로 나타났다. 표준 k-${\varepsilon}$ 모형은 이들 두 개의 흐름분리영역의 크기를 과소산정하고 있으며, k-${\omega}$ SST 모형은 위어 전면부에서 발생하는 흐름분리 영역을 다소 과대 산정하는 것으로 나타났다. RNG k-${\varepsilon}$ 모형은 전반적으로 양호하게 두 흐름분리 영역을 예측하는 한편, k-${\omega}$ SST 모형은 위어 상류부 모서리에서 발생하는 박리거품의 발생 형태를 가장 잘 예측하는 것으로 나타났다.