DOI QR코드

DOI QR Code

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle

강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가

  • Lee, Juyong (Department of Aerospace Engineering, Korea Aerospace University) ;
  • Shin, Junsu (Department of Aerospace Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 이주용 (한국항공대학교 항공우주 및 기계공학과) ;
  • 신준수 (한국항공대학교 항공우주 및 기계공학과) ;
  • 성홍계 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2018.07.27
  • Accepted : 2018.10.14
  • Published : 2018.10.31

Abstract

The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

초음속 수축-확대 사각 노즐 내 강한 유동 박리를 동반한 초음속 유동에 적합한 난류 모델과 압축성 보정 모델을 평가하였다. 난류 모델로는 Yang과 Shih의 Low-Re $k-{\varepsilon}$ 모델, Menter의 $k-{\omega}$ SST모델, Wilcox의 $k-{\omega}$ 모델을 평가하였다. 압축성 효과를 보다 정확하게 예측하기 위하여 각각의 난류 모델에 Sarkar와 Wilcox의 압축성 보정 모델을 적용하였다. 각 난류 모델과 압축성 보정 모델의 결과는 실험 데이터와 비교하여 분석을 하였다. 난류 모델에 따라 충격파의 위치와 압력 회복률이 다르게 나타났으나 압축성 보정을 통해 더욱 개선된 결과를 얻었다.

Keywords

References

  1. C. A. Hunter, "Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows," AIAA-98-307, 1998
  2. A. Balabel, A. M. Hegab, M. Nast, Samy M. El-Behery, "Assessment of turbulence modeling for gas flow in two-dimensional convergent-divergent rocket nozzle," Applied Mathematical Modeling, Vol. 35, No. 7, pp. 3408-3422, 2011. https://doi.org/10.1016/j.apm.2011.01.013
  3. K. S. Abdol-Hamid, Alaa Elmiligui, Craig A. Hunter, "Numerical Investigation of Flow in an Over expanded Nozzle with Porous Surface," Journal of Aircraft, Vol. 43, No. 4, pp. 1217-1225, 2006. https://doi.org/10.2514/1.18835
  4. Wilcox, D. C., "Reassessment of the Scale-Determining Equation for Advanced Turbulence Models," AIAA Journal, Vol. 26, No. 11, pp. 1299-1310, 1988. https://doi.org/10.2514/3.10041
  5. Yang, Z., Shih, T. H., "New Time Scale Based $k-{\varepsilon}$ Model for Near-Wall Turbulence," AIAA Journal, Vol. 31, No. 7, pp. 18-25, 2013.
  6. Menter, F. R., "Two-Equation Eddy -Viscosity Turbulence Models for Engineering Application," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149
  7. Sarkar, S., Erlebacher, B., Hussaini, M., Kreiss, H., "The Analysis and Modeling of Dilatational Terms in Compressible Turbulence," Journal of Fluid Mechanics, Vol. 227, pp. 473-493, 1991.
  8. Wilcox, D. C., Turbulence Modeling for CFD, 2nd ed., DCW Industries, La Canada, California, 2002
  9. Sung H. G., Kim S. J., Yeom H. Y., Heo J. Y., "On the Assessment of Compressibility Effects of Two-Equation Turbulence Models for Supersonic Transition Flow with Flow Separation," International Journal of Aeronautical and Space Science, Vol. 14, No. 4, pp. 387-397, 2013. https://doi.org/10.5139/IJASS.2013.14.4.387
  10. Sung H. G., Yeom H. W., Yoon S. K. Kim S. J., Kim J. G., "Inverstigation of Rocket Exhaust Diffusers for Altitude Simulation," Journal of Propulsion and Power, Vol. 26, No. 2, pp. 240-247, 2010. https://doi.org/10.2514/1.46226
  11. Heo J. Y., Jung J. Y., Sung H. G., Yang J. S., Lee J. H., "Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 1, pp. 61-69, 2013. https://doi.org/10.6108/KSPE.2013.17.1.061
  12. Yoon, S., Jameson, A., "Lower-Upper Symmetric Gauss-Seidel Method for the Euler and Navier-Stokes Equations," AIAA Journal, Vol. 26, No. 9, pp. 1025-1026, 1998. https://doi.org/10.2514/3.10007
  13. Kim, K. H., Kim, C. A., Rho, O. H., "Methods for the Accurate Computations of Hypersonic Flow I. AUSMPW+ Scheme," Journal of Computational Physics, Vol. 174, pp. 38-80, 2001. https://doi.org/10.1006/jcph.2001.6873
  14. S. Kim, S. Lee, K. Kim, "Wavenumber-extended high-order oscillation control finite volume schemes for multi-dimensional aeroacoustic computations," Journal of Computational Physics, Vol. 227, pp. 4089-4122, 2008. https://doi.org/10.1016/j.jcp.2007.12.013
  15. Hsieh, S. Y., Yang, V., "A Preconditioned flux-differencing scheme for chemically reacting flows at all Mach numbers," International Journal of Computational Fluid Dynamics, Vol. 3, pp. 31-49, 1997.