• Title/Summary/Keyword: SST k-${\omega}$ model

Search Result 132, Processing Time 0.045 seconds

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow (큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향)

  • Heo, Junyoung;Jung, Junyoung;Sung, Hong-Gye;Yang, June-Seo;Lee, Ji-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulent models suitable for large scale separation flows perturbed by a pintle strokes. Two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and the k-${\omega}$ SST models with or without compressibility correction proposed by Wilcox and Sarkar are evaluated. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. Mach disk location and pressure recovery profiles in flow separation region are noticeably distinct between turbulent models of k-${\varepsilon}$ and k-${\omega}$ SST. The compressible effect corrections to those models improve resolving of separation flow behaviors. The compressibility corrections to k-${\varepsilon}$ model have provided very comparable results with test data.

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

Heat Transfer on Supersonic Nozzle using Combined Boundary Layer Integral Method (수치해석 통합기법을 이용한 노즐 내열재 표면의 열전달 해석)

  • Bae, Ji-Yeul;Bae, Hyung Mo;Ryu, Jin;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • A boundary layer integral combined with a 1-D isentropic core flow model has been successfully used to determine heat transfer rate on the surface of a supersonic nozzle. However its accuracy is affected by the core flow condition which is used as a boundary condition for the integral calculation. Because flow behavior near a nozzle throat deviates from 1-D isentropic condition due to 2-D flow turning and interaction between core flow and boundary layer, accuracy of heat transfer calculation decreases at a nozzle throat. Therefore, CFD is adopted to deduce improved core flow condition and increase accuracy of boundary layer integral at nozzle throat in this research. Euler model and SST $k-{\omega}$ model is solved by CFD code and used as a boundary condition for boundary layer integral. Developed code is tested in the supersonic nozzle from the previous research and improvement in accuracy is observed, especially at nozzle throat and diverging section of the nozzle. Error between experimental result and calculation result reduced by 16% when a calculation is made based on the SST $k-{\omega}$ model. Method developed in this research is expected to be used in thermal design of the rocket nozzle.

Numerical Simulation for Transonic Wing-Body Configuration using CFD (CFD를 이용한 천음속 날개-동체 형상 해석)

  • Kim, Younghwa;Kang, Eunji;Ahn, Hyokeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.

Effects of Baffle Structure Variation on Heat Transfer Performance in a Shell-Tube Heat Exchanger (배플 구조변경이 Shell-Tube 열교환기의 열전달성능에 미치는 영향)

  • Hou, Rong-Rong;Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3014-3021
    • /
    • 2015
  • Shell-tube heat exchanger is widely applied in industrial field by easily manufacturing as to various size and flow patterns. In this study, by changing baffle's cut direction, tilt angle and rotational angle as well as by using SST (Shear Stress Transport) $k-{\omega}$ turbulence model in ANSYS FLUENT v.14, the heat transfer rate and pressure drop characteristics of inner shell will be analyzed to improve heat transfer ability. As a result of analysis, heat transfer performance according to cut direction of baffle has been improved with vertical model B and angle $45^{\circ}$ model C than horizontal model A. In addition, the tilt $10^{\circ}$ of the baffle and rotational angle $0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}$ of model D showed better result in heat transfer rate and pressure drop.

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.