DOI QR코드

DOI QR Code

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state

실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석

  • 강위관 ((주) Fluid & Thermal Engineering) ;
  • 최두열 ((주) Fluid & Thermal Engineering) ;
  • 신지영 (동의대학교 기계공학과) ;
  • 김무근 (인제대학교 기계자동차공학부)
  • Received : 2011.01.12
  • Accepted : 2011.02.16
  • Published : 2011.03.31

Abstract

TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

열압축기는 고압 증기를 이용하여 저압 증기를 중간압으로 이송하는 일종의 이젝터이다. 이젝터에 대한 기존의 수치해석 연구는 대부분 작동유체를 이상기체로 취급하고 있으나 상변화가 발생하는 경우 이상기체 거동에서 크게 벗어날 수 있다. 따라서 본 연구에서는 이상기체 상태방정식 대신 Redlich-Kwong 방정식을 적용하여 열압축기 내부 유동을 수치 해석하였고, realizable k-${\epsilon}$ 모델과 SST k-${\omega}$ 모델을 비교한 결과 SST k-${\omega}$ 모델이 shock diamond 패턴과 박리 및 난류경계층을 잘 예측하는 것을 확인할 수 있었다. 또한 실제기체 상태방정식을 사용한 경우가 이상기체 상태방정식을 사용한 경우에 비해 상대적으로 디퓨저 입구 부분과 디퓨저 목부분에서 에너지 손실이 많은 것을 알 수 있었으며, 디퓨저 출구부분에서 shock train에 의한 압력상승은 상대적으로 적으나 pseudo shock에 의한 압력상승은동일한 것으로 확인되었다.

Keywords

References

  1. UN water, "Coping with water scarcity, A strategic issue and priority system wide action", August 2006.
  2. T. Ueda., "On the performance characteristics of steam ejectors", Japan Society of Mechanical Engineers, vol. 4, no. 13, pp. 124-130, 1961. https://doi.org/10.1299/jsme1958.4.124
  3. K. Matsuo, K. Sasaguchi, K. Tasaki and H. Mochizuki, "Investigation of supersonic air ejectors, Part 1. Perpormance in the case of zerosSecondary flow", Bulletin of the JSME, Series B, vol. 24, no. 198, pp. 2090-2097, 1981. https://doi.org/10.1299/jsme1958.24.2090
  4. K. Matsuo, K. Sasaguchi, K. Tasaki and H. Mochizuki, "Investigation of supersonic air ejectors, Part 2. Effects of throat-area-ratio on ejector performance", Bulletin of the JSME, Series B, vol. 25, no. 210, pp. 1898-1905, 1982. https://doi.org/10.1299/jsme1958.25.1898
  5. Amel Hemidi, Francois Henry, Sebastien Leclaire, Jean-Marie Seynhaeve, and Yann Bartosiewicz, "CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and twophase operation", Applied Thermal Engineering, vol. 29, pp. 1523-1531, 2009. https://doi.org/10.1016/j.applthermaleng.2008.07.003
  6. Amel Hemidi, Francois Henry, Sebastien Leclaire, Jean-Marie Seynhaeve, and Yann Bartosiewicz, "CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features", Applied Thermal Engineering, vol. 29, pp. 2990-2998, 2009. https://doi.org/10.1016/j.applthermaleng.2009.03.019
  7. T. Sriveerakul, S. Aphornratana, and K. Chunnanond, "Performance prediction of steam ejector using computational fluid dynamics: Part 1. validation of the CFD results", International Journal of Thermal Sciences, vol. 46, pp. 812-822, 2007. https://doi.org/10.1016/j.ijthermalsci.2006.10.014
  8. T. Sriveerakul, S. Aphornratana, and K. Chunnanond, "Performance prediction of steam ejector using computational fluid dynamics. Part 2. flow structure of a steam ejector influenced by operating pressures and geometries", International Journal of Thermal Sciences, vol. 46, pp. 823-833, 2007. https://doi.org/10.1016/j.ijthermalsci.2006.10.012
  9. K. Pianthong, W. Seehanam, M. Behnia, T. Sriveerakul, and S. Aphornratana, "Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique", Energy Conversion and Management, vol. 48, pp. 2556-2564, 2007. https://doi.org/10.1016/j.enconman.2007.03.021
  10. K. Matsuo, Y. Miyazato, and Heuy-Dong Kim, "Shock train and pseudo- shock phenomena in internal gas flows", Progress in Aerospace Sciences, vol. 35, pp. 33-100, 1999. https://doi.org/10.1016/S0376-0421(98)00011-6
  11. Y. Bartosiewicz, Zine Aidoun, P. Desevaux, Yves Mercadier, "Numerical and experimental investigations on supersonic ejectors," International Journal of heat and mass transfer, vol. 26, pp. 56-70, 2005.
  12. P. Desevaux., "A method for visualizing the mixing zone between two co-axial flows in an ejector", Optics and Lasers in engineering, vol. 35, pp. 317-323, 2001. https://doi.org/10.1016/S0143-8166(01)00020-3

Cited by

  1. Numerical Simulation of Steam Jet Vacuum System in Multi-effect Desalination Plant vol.39, pp.3, 2015, https://doi.org/10.5916/jkosme.2015.39.3.238