• 제목/요약/키워드: SRM 대학교

검색결과 74건 처리시간 0.021초

Homology Modeling of Cysteinyl Leukotriene1 Receptor

  • Babu, Sathya;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.13-18
    • /
    • 2015
  • Cysteinyl leukotrienes are inflammatory mediators having important role in pathophysiological conditions such as asthma, allergic rhinitis and have been implicated in a number of inflammatory conditions including cardiovascular and gastrointestinal diseases. Most of the disease regulatory actions of the CysLTs are mediated through CysLT1 receptor. Hence in the present study, homology modeling of CysLT1 was performed because the availability of 3D structure would enhance the development of new drugs for inflammatory diseases. However the templates identified have low sequence identity which increases the complexity of modeling. Hence, homology modeling was performed using single template, multiple templates and also using threading I-TASSER server. The best model was selected based on the validation of the generated models using Ramachandran and ERRAT plot. The model developed could be useful for identifying crucial residues and docking study.

3D-QSAR Studies of 8-Substituted-2-aryl-5-alkylaminoquinolines as Corticotropin-releasing Factor-1 Receptor Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.176-183
    • /
    • 2015
  • Corticotropin-releasing actor receptors (CRFRs) activates the hypothalamic pituitary adrenal axis, one of the 2 parts of the fight or flight response to stress. Increased CRH production has is associated with Alzheimer's disease and major depression and hypoglycemia. In this study, we report the important structural and chemical parameters for CRFR inhibitors using the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolines. A 3D QSAR study, Comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with a $q^2$ of 0.607 with 6 components and $r^2$ of 0.991. The statistical parameters from the generated CoMFA models indicated that the data are well fitted and have high predictive ability. The contour map resulted from the CoMFA models might be helpful in the future designing of novel and more potent CRFR derivatives.

Theoretical Structure Prediction of Bradykinin Receptor B2 Using Comparative Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권4호
    • /
    • pp.234-240
    • /
    • 2016
  • Bradykinin receptor B2, a GPCR protein, binds with the inflammatory mediator hormone bradkynin. It plays an important role in cross-talk between the renin-angiotensin system (RAS) and the kinin-kallikrein system (KKS). Also, it is involved in many processes including vasodilation, edema, smooth muscle spasm and pain fiber stimulation. Hence, studuying the structural features of the receptor becomes important. But the unavailability of the three dimensional structure of the protein makes the analysis difficult. Hence we have performed the homology modelling of Bradykinin receptor B2 with 5 different templates. 25 different homology models were constructed. Two best models were selected based on the model validation. The developed models could be helpful in analysing the structural features of Bradykinin receptor B2 and in pathophysiology of various disorders related to them.

Comparative Molecular Similarity Indices Analysis (CoMSIA) of 8-substituted-2-aryl-5-alkylaminoquinolines as Corticotropin-releasing factor-1 Receptor Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권4호
    • /
    • pp.241-248
    • /
    • 2016
  • Corticotropin-releasing factor receptors (CRFRs) activate the hypothalamic-pituitary-adrenal axis, which is an integral part of the fight or flight response to stress. Increase in CRH level is observed in Alzheimer's disease and major depression and hypoglycemia. Here, we report on the relevant physicochemical parameters required for the CRFR inhibitors. Comparative molecular similarity indices analysis (CoMSIA) was performed with the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolinesas CRFR inhibitors. The best predictions were obtained for the best CoMSIA model with a $q^2$ of 0.576 with 6 components and $r^2$ of 0.977. The statistical parameters from the generated CoMSIA models indicated that the data are well fitted and have high predictive ability. CoMSIA contour maps could be useful in the designing of more potent and novel CRFR derivatives.

Homology Modeling of CCR 4: Novel Therapeutic Target and Preferential Maker for Th2 Cells

  • Shalini, M.;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.234-240
    • /
    • 2014
  • C-C chemokine receptor type 4 (CCR4) is a chemokine receptor with seven transmembrane helices and it belongs to the GPCR family. It plays an important role in asthma, lung disease, atopic dermatitis, allergic bronchopulmonary aspergillosis, cancer, inflammatory bowel disease, the mosquito-borne tropical diseases, such as dengue fever and allergic rhinitis. Because of its role in wide spectrum of disease processes, CCR4 is considered to be an important drug target. Three dimensional structure of the protein is essential to determine the functions. In the present study homology modeling of human CCR4 was performed based on crystal structure of CCR5 chemokine receptor. The generated models were validated using various parameters. Among the generated homology models the best one is selected based on validation result. The model can be used for performing further docking studies to identifying the critical interacting residues.

Comparative Molecular Similarity Indices Analysis of Caspase-3 Inhibitors

  • Babu, Sathya;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.227-233
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular similarity indices analysis (CoMSIA) was performed on a series of 3,4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMSIA model ($q^2$ = 0.586, $r^2$ = 0.955). The predictive ability of test set ($r^2_{pred}$) was 0.723. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

Three Dimensional Structure Prediction of Neuromedin U Receptor 1 Using Homology Modelling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2017
  • Neuromedin U receptor 1 is a GPCR protein which binds with the neuropeptide, neuromedin. It is involved in the regulation of feeding and energy homeostasis and related with immune mediated inflammatory diseases like asthma. It plays an important role in maintaining the biological clock and in the regulation of smooth muscle contraction in the gastrointestinal and genitourinary tract. Analysing the structural features of the receptor is crucial in studying the pathophysiology of the diseases related to the receptor important. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor using 5 different templates. The models were subjected to model validation and two models were selected as optimal. These models could be helpful in analysing the structural features of neuromedin U receptor 1 and their role in disorders related to them.

Binding Interaction Analysis of Neuromedin U Receptor 1 with the Native Protein Neuromedin U

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.14-19
    • /
    • 2017
  • Neuromedin, a neuropeptide, which is involved in various functions that include contractile activity on smooth muscle, controlling the blood flow and ion transport in the intestine, increased blood pressure and regulation of adrenocortical function. It is involved in the pathophysiology of various immune mediated inflammatory diseases like asthma. In this study, we have performed protein-protein docking analysis of neuromedin U - neuromedin U receptor 1 complex. We have developed homology models of neuromedin U, and selected a reliable model using model validation. The model was docked with the receptor model, to analyse the crucial interactions of the complex. This study could be helpful as a tool in developing novel and potent drugs for the diseases related with neuromedin U receptor 1.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Theoretical Protein Structure Prediction of Glucagon-like Peptide 2 Receptor Using Homology Modelling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제10권3호
    • /
    • pp.119-124
    • /
    • 2017
  • Glucagon-like peptide 2 receptor, a GPCR, binds with the glucagon-like peptide, GLP-2 and regulates various metabolic functions in the gastrointestinal tract. It plays an important role in the nutrient homeostasis related to nutrient assimilation by regulating mucosal epithelium. GLP-2 receptor affects the cellular response to external injury, by controlling the intestinal crypt cell proliferation. As they are therapeutically attractive towards diseases related with the gastrointestinal tract, it becomes essential to analyse their structural features to study the pathophysiology of the diseases. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor based on single- and multiple template modeling. The models were subjected to model validation and a reliable model based on the validation statistics was identified. The predicted model could be useful in studying the structural features of GLP-2 receptor and their role in various diseases related to them.