• Title/Summary/Keyword: SREBP-1

Search Result 219, Processing Time 0.038 seconds

Arctii Lappa Fructus Extract Induces Lipogenesis through SREBP-1 Activation of Sebocytes (피지선세포에서 SREBP-1 활성에 의한 우방자추출물의 지질 생성 촉진 작용)

  • In, Myung Hee;Mun, Yeun Ja;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Arctii Lappa Fructus has the numerous health benefits, including antioxidant, anti-inflammatory, and anti-carcinogenic properties. Skin lipids are one of several factors that maintain epidermal barrier function. This study was to explore the lipogenic effect by ethanol extract of Arctii Lappa Fructus (EAF) in sebocytes. First, it was confirmed that EAF exhibited high antioxidant activity and collagenase activity inhibition. We found that cholesterol and triglyceride levels of cells by EAF were increased significantly in a dose-dependent manner. Moreover, EAF increased the expression of transcription factor sterol regulatory element-binding protein-1 (SREBP-1) in the cells. These results suggest that EAF induces lipogenesis in cells through the activation of SREBP-1.

Cannabidiol Inhibits Lipogenesis by Regulating Akt/AMPK-SREBP-1 Pathway in Sebocytes (피지세포에서 Akt/AMPK-SREBP-1 경로를 통한 CBD의 피지 합성 억제 효능)

  • Yoon Gyung Kwon;Ji Young Yoon;Hanon Lee;Dong Hyo Kim;Jun Hyo Lee;Diane M Thiboutot;Dae Hun Suh;Byoung Jun Park
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.343-348
    • /
    • 2023
  • Acne is one of the most common skin diseases, mainly occurring in adolescence. The pathophysiology of acne involves not only hormonal, genetic and environmental factors, but also other factors including hyperseborrhea, inflammation, over-keratinization of follicular keratinocytes and overgrowth of Cutibacterium acnes (C. acnes). Cannabidiol (CBD) is known to relieve pain, stress and inflammation. Moreover, cannabis extracts containing CBD have been reported to be effective in treating acne. However, the therapeutic effect of CBD on acne remains unclear. Therefore, this study aimed to investigate the effect and mechanism of CBD on lipogenesis in SEB-1 sebocytes. We treated sebocytes with CBD and found that it not only inhibited lipid synthesis, but also inhibited cell proliferation by inducing apoptosis. We then demonstrated that sterol response element-binding protein-1 (SREBP-1) mediates the inhibitory effect of CBD on lipogenesis. Furthermore, Akt and adenosine monophosphate-activated protein kinase (AMPK), upstream regulators of SREBP-1, were regulated by CBD treatment. Taken together, our studies demonstrate that CBD inhibits adipogenesis by regulating the Akt/AMPK-SREBP-1 signaling pathway, providing potential for use as a therapeutic agent for acne. Further research is needed to confirm the effect of CBD on inflammation caused by hyperkeratosis, which will increase the possibility of using CBD for acne treatment.

Policosanol Reduces Blood Cholesterol Levels by Inhibiting Sterol Regulatory Element-binding Proteins-1c and Fatty Acid Synthase (Sterol regulatory element-binding proteins-1c와 지방산 합성효소의 억제를 통한 폴리코사놀의 혈중 콜레스테롤 감소)

  • Min Jung Park;Byeong Min An;Dongjun Lee;Ji Myung Choi;Yung Hyun Choi;Bo Sun Joo
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.315-324
    • /
    • 2023
  • The underlying action of policosanol in lowering cholesterol level has not yet been clearly elucidated. Several recent studies have suggested that sterol regulatory element-binding proteins (SREBP)-1c play a role in the regulation of cholesterol synthesis via the fatty acid synthesis pathway. To date, no study has evaluated the effects of policosanol on SREBP-1c-mediated fatty acid synthesis. Therefore, this study aimed to investigate whether the SREBP-1c-mediated fatty acid biosynthetic pathway is associated with the cholesterol-lowering effects of policosanol. Seven-week-old C57BL/6 male mice were randomly divided into 7 groups (n=7 per group) and treated for 8 weeks as follows: 1) normal diet (normal control), 2) high-fat diet (HFD), 3) HFD+ethanol (Pol-0), 4) HFD+policosanol 1 mg/kg (Pol-1), 5) HFD+policosanol 2 mg/kg (Pol-2), 6) HFD+policosanol 4 mg/kg (Pol-4), and 7) HFD+simvastatin 50 ㎍/kg (positive control). Policosanol and simvastatin were administered at the same time every day while maintaining the HFD. Body weight and food intake were measured weekly for 8 weeks. After 8 weeks, serum cholesterol levels were measured, histological analysis was carried out, and the expressions of SREBP-1c and fatty acid synthase (FAS) in the liver tissues were examined. Policosanol reduced body weight and the amount of food intake in a dose-dependent manner. Serum cholesterol levels were significantly lowered in the Pol-1 and Pol-4 groups. The expression of SREBP-1c and FAS was also significantly decreased in the Pol-4 group. These results suggest that the cholesterol-lowering effects of policosanol can occur due to the inhibition of the expression of SREBP-1c and FAS.

Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

  • Zhang, Guo Hua;Lu, Jian Xiong;Chen, Yan;Dai, Hong Wei;ZhaXi, YingPai;Zhao, Yong Qing;Qiao, Zi Lin;Feng, Ruo Fei;Wang, Ya Ling;Ma, Zhong Ren
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.797-806
    • /
    • 2016
  • Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. $LXR{\alpha}$ activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, $LXR{\alpha}$ activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, $LXR{\alpha}$ might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and $LXR{\alpha}$ activation enhanced these effects, suggesting $LXR{\alpha}$ mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.

Ponciri Fructus Extract Induces Lipogenesis through Transcription Factor SREBP-1 Activation (지실 추출물의 전사인자 SREBP-1 활성에 의한 지질 생성 촉진)

  • Kim, Dae-Sung;Jeon, Byoung-Kook;Mun, Yeun-Ja;Lee, Ghang-Tai;Lee, Kun-Kuk;Woo, Won-Hong
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.268-273
    • /
    • 2012
  • This study was to explore the lipogenic effect by ethanol extract of ponciri fructus (EPF) and possible molecular mechanisms in sebocyte. When SZ95 sebocyte cell line were treated with the EPF, lipid droplets were accumulated in the majority of cells. EPF increased expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) in the SZ95 cells. EPF augmented expression of PPAR-${\beta}$ and PPAR-${\gamma}$ but not that of PPAR-${\alpha}$. These results suggest that EPF induces lipogenesis in SZ95 cells through SREBP-1, PPAR-${\beta}$ and PPAR-${\gamma}$ activations.

Inhibitory Activity of Wild-Simulated Ginseng against Non-Alcoholic Fatty Liver Disease in HepG-2 Cells (산양삼(Wild-Simulated Ginseng)의 비알코올성 지방간 억제활성)

  • So Jung Park;Yurry Um;Min Yeong Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • In this study, we investigated in vitro inhibitory activity of wild-simulated ginseng (WSG) against non-alcoholic fatty liver disease using HepG-2 cells. T0901317 treatment increased the lipid accumulation in HepG-2 cells, but WSG treatment inhibited T0901317-mediated lipid accumulation. In addition, WSG downregulated T0901317-mediated expression of SREBP-1c, ACC, FAS and SCD-1 protein. In addition, WSG increased the phosphorylation level of LKB1 and AMPK. Compound C treatment blocked WSG-mediated downregulation of SREBP-1c protein. In conclusion, WSG is considered to inhibit the accumulation of lipids and triglycerides in HepG-2 cells by inducing the activation of LKB1 and AMPK successively, thereby reducing the expression of FAS, ACC, and SCD-1 through suppression of SREBP-1c expression.

Kaurenoic acid, a natural substance from traditional herbal medicine, alleviates palmitate induced hepatic lipid accumulation via Nrf2 activation

  • Han, Changwoo
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.64-71
    • /
    • 2020
  • Objectives: This study was done to look into whether Nrf2 take some role in the anti-lipogenic effect of kaurenoic acid in a nonalcoholic fatty liver disease (NAFLD) cellular model. Materials and Methods: We measured the effect of kaurenoic acid on intracellular steatosis and Nrf2 activation. Next, the effect of kaurenoic acid on SREBP-1c and some lipogenic genes in palmitate treated HepG2 cells with or without Nrf2 silencing. Results: The increased SREBP-1c expression was significantly decreased by concomitant kaurenoic acid treatment in non-targeting negative control siRNA transfected HepG2 cells. However, kaurenoic acid did not significantly inhibited increased SREBP-1c level in Nrf2 specific siRNA transfected HepG2 cells Conclusions: Kaurenoic acid has a potential to activate Nrf2, which may suppress SREBP-1c mediated intracellular steatosis in HepG2 cells.

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi;Nishio, Yoshihiko;Takemoto, Tadashi;Ikeuchi, Chikako;Sekine, Osamu;Morino, Katsutaro;Maeno, Yasuhiro;Obata, Toshiyuki;Ugi, Satoshi;Maegawa, Hiroshi;Kimura, Hiroshi;Kashiwagi, Atsunori
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2009
  • Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

The Mechanism of LDL Receptor Up-regulation by Ginsenoside-Rb2 in HepG2 Cultured under Enriched Cholesterol Condition (고콜레스테롤 조건하에 배양된 HepG2에서의 ginsenoside-Rb2에 의한 LDL receptor 억제 완화 기전)

  • Lim, G-Rewo;Lee, Hyun-Il;Kim, Eun-Ju;Ro, Young-Tae;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.28 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • The effect of ginsenoside-Rb2, one of a major pharmacological component of Panax ginseng C.A. Meyer, on low density lipoprotein (LDL) receptor expression was investigated and compared with hypocholesterolemic drug lovastatin. In HepG2 cell, exogenous cholesterol decreased LDL receptor mRNA expression, but ginsenoside-Rb2 recovered this reduction of LDL receptor mRNA up to normal expression level. Lovastatin also increased LDL receptor mRNA expression as similar as ginsenoside-Rb2 did. The reduction of sterol regulatory element binding protein (SREBP) transcription by exogenous cholesterol was also similarly recovered by ginsenoside-Rb2 and lovastatin addition. Compound K, a metabolite of ginsenoside-Rb2 and -Rb1 by human intestinal bacteria also increased the SREBP mRNA expression in cholesterol-enriched condition. Ginsenoside-Rb2 seems to up-regulate LDL receptor mRNA expression through the induction of de novo SREBP transcription. Therefore, increased expression of SREBP mRNA by ginsenoside-Rb2 elevated the LDL receptor mRNA expression in HepG2 cells, and these inductions possibly drop the plasma cholesterol level in hypercholesterolemia patients, in vivo, as likely in case of lovastatin.

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.