• Title/Summary/Keyword: SR protein

Search Result 129, Processing Time 0.031 seconds

Regulation of Contraction and $Ca^{2+}$ Transient by Histidine-rich $Ca^{2+}$-binding Protein in Ventricular Myocytes (히스티딘-리치 $Ca^{2+}$ 결합 단백질에 의한 심실근세포 수축 및 $Ca^{2+}$ Transient의 조절)

  • Son, Min-Jeong;Kim, Joon-Chul;Kim, Seong-Woo;Ahn, Jong-Real;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.377-381
    • /
    • 2012
  • The histidine-rich $Ca^{2+}$ binding protein (HRC) is a $Ca^{2+}$ binding protein in the sarcoplasmic reticulum (SR). In this study, we examined whether the HRC is involved in the regulation of cardiac contraction and $Ca^{2+}$ signaling using HRC knock-out (KO) mouse ventricular myocytes. In field-stimulated single mouse ventricular myocytes, cell shortenings and $Ca^{2+}$ transients were measured using a video edge detection and a confocal $Ca^{2+}$ imaging, respectively. Compared with the wide-type (WT) myocytes, the magnitudes of cell shortenings were significantly larger in HRC KO cells (P<0.01, WT vs. KO). The rate of contraction and relaxation was significantly accelerated in HRC KO myocytes (P<0.05 and P<0.01, respectively, WT vs. KO). The magnitudes of $Ca^{2+}$ transients were increased by HRC KO (P<0.01, WT vs. KO). In addition, the decay of the $Ca^{2+}$ transient was faster in HRC KO cells than in wild-type cells P<0.01, WT vs. KO). These results suggest that HRC may suppress SR $Ca^{2+}$ releases and decay of $Ca^{2+}$ transients during action potentials, thereby attenuating ventricular contraction and relaxation.

Effect of Strontium on Polyamine Synthesis and Diamine Oxidase during the Germination of Mung Bean (Vigna radiata L.) (숙주의 발아과정 동안 폴리아민 생합성과 Diamine 산화효소에 대한 스트론티움 효과)

  • Kim, Tae-Wan;Kwon, Young-Up;Yun, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.437-444
    • /
    • 2003
  • Objective of this experiment was to investigate the role of strontium in intracellular processes in mung bean (Vigna radiata L.). Diamine oxidase (DAO) induction by $Sr^{2+}$ appeared to a decrease in putrescine levels correspondently. DAO activities in the hypocotyls were in a range of 0.5 to $1.8unit{\cdot}mg^{-1}\;protein{\cdot}min^{-1}$. The decrease in Put levels in the cotyledons might be partly resulted from Put degradation by DAO. It was observed that the accumulation of spermidine and spermine by $Sr^{2+}$ was in the range of 1 mM to 10 mM. Spermidine levels were 2 to 3 fold higher than in the absence of strontium. The increase in polyamine levels was observed not only on a basis of g fresh weight but also a RNA basis. These results demonstrated that the inhibitory action of $Sr^{2+}$ may be closely related with polyamine metabolism as well as diamine oxidation and polyamine accumulation.

Effects of Scutellariae Radix Extracts on LPS-induced Acute Lung Injury (황금이 LPS로 유발된 급성 폐 손상에 미치는 영향)

  • Sin, Ho-Phil;Kim, Jong-Dae;Park, Mee-Yeon;Choi, Hae-Yun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.55-64
    • /
    • 2011
  • The object of this study was to observe the effects of Scutellariae Radix (SR) aqueous extracts on lipopolysaccharide (LPS)-induced rat acute lung injury. Five different dosages of SR extracts were orally administered once a day for 28 days before LPS treatments, and then 5 hours after lipopolysaccharide treatment, all rats were sacrificed. 8 groups, each of 16 rats per group were used in the present study. Changes on the body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, $PaO_2$ and $PaCO_2$) bronchoalveolar lavage fluid (BALF) protein, lactate dehydrogenase (LDH) and proinflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1${\beta}$ (IL-1${\beta}$) contents, total cell numbers, neutrophil and alveolar macrophage ratios, lung malondialdehyde (MDA), myeloperoxidase (MPO), proinflammatory cytokine TNF-${\alpha}$ and IL-1${\beta}$ contents were observed with histopathology of the lung, changes on luminal surface of alveolus (LSA), thickness of alveolar septum, number of polymorphonuclear neutrophils (PMNs). The results were compared with a potent antioxidant ${\alpha}$-lipoic acid, 60 mg/kg, in which the effects on LPS-induced acute lung injury were already confirmed. The results obtained in this study suggest that over 125 mg/kg of SR extracts showed favorable effects on the LPS-induced acute lung injury, and 250 mg/kg of SR extracts resembling acute respiratory distress syndrome mediated by their antioxidant and anti-inflammatory effects and .as similar to ${\alpha}$-lipoic acid in the present study. Therefore, it is expected that SR will be showed favorable effects on the acute respiratory distress syndrome.

Establishment of a live vaccine strain against fowl typhoid and paratyphoid

  • Cho, Sun-Hee;Ahn, Young-Jin;Kim, Tae-Eun;Kim, Sun-Joong;Huh, Won;Moon, Young-Sik;Lee, Byung-Hyung;Kim, Jae-Hong;Kwon, Hyuk Joon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • To develop a live vaccine strain against fowl typhoid and paratyphoid caused by Salmonella serovar Gallinarum biovar Gallinarum (Salmonella Gallinarum) and Salmonella serovar Enteritidis (Salmonella Enteritidis), respectively, several nalidixic acid resistant mutants were selected from lipopolysaccharide (LPS) rough strains of Salmonella Gallinarum that escaped from fatal infection of a LPS-binding lytic bacteriophage. A non-virulent and immunogenic vaccine strain of Salmonella Gallinarum, SR2-N6, was established through in vivo pathogenicity and protection efficacy tests. SR2-N6 was highly protective against Salmonella Gallinarum and Salmonella Enteritidis and safer than Salmonella Gallinarum vaccine strain SG 9R in the condition of protein-energy malnutrition. Thus, SR2-N6 may be a safe and efficacious vaccine strain to prevent both fowl typhoid and paratyphoid.

Molecular Cloning and Characterization of Calumenin in Rabbit Skeletal Sarcoplasmic Reticulum

  • Jung, Dai-Hyun;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.53-53
    • /
    • 2003
  • Calumenin was previously identified as a high affinity Ca$\^$2+/ binding protein in mouse cardiac sarcoplasmic reticulum (SR). For the present study, a 48 kDa skeletal homologue of calumenin was identified by sucrose-density gradient of rabbit skeletal SR membranes, concanavalin A treatment, 2D-gel electrophoresis, $\^$45/Ca$\^$2+/ overlay, Stains-all staining, and MALDI-TOF analysis. We attempted to clone the skeletal calumenin by RT-PCR based on mouse cardiac and human calumenin sequences. The deduced amino acid sequence (315 residues) of the skeletal calumenin showed high identity to mouse cardiac calumenin (90%). As seen in the cardiac calumenin, the deduced sequence contains a 19 amino acid N-terminal signal sequence and a HDEF C-terminal sequence, a putative retrieval signal to ER. Also, the skeletal calumenin contains one N-glycosylation site, three PKC phosphorylation sites, eight casein kinase 2 phosphorylation sites, and 6 EF-hand domains. GST-calumenin showed a conformational change and increased mobility in the presence of Ca$\^$2+/ in SDS-PAGE. Three calumenin interacting proteins (ryanodine receptor 1, glycogen phosphorylase, and phosphofructo kinase) were identified by pull-down assay with GST-calumenin and solubilized SR. All the interactions were Ca$\^$2+/dependent. The present results suggest that calumenin plays an important role in Ca$\^$2+/ homeostasis of muscle cells.

  • PDF

The Effects of Scutellaria Radix Extract on the Alcohol-Induced Fatty Acid Synthesis of Liver in Rats (알코올로 유도된 흰쥐의 간 지방 형성에 황금 추출물이 미치는 효과)

  • Kim, Bum Hoi
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • Objectives: Alcoholic fatty liver is a potentially pathologic condition which can progress to steatohepatitis, fibrosis, and cirrhosis. The objective of this study is to investigate the effects of Scutellaria Radix (SR) extract on the alcoholic fatty liver induced by long-term EtOH administration. Results: Male Sprague Dawley rats were used in this study. All animals were randomly divided into Normal group, treated with saline (n=10); EtOH group, treated with ethanol (n=10); EtOH+SR group, treated with ethanol+Scutellaria Radix extract (n=10). For oral administration of ethanol in EtOH and EtOH+SR group, the ethanol was dissolved in distilled water in concentrations of 25% (v/v). Throughout the experiment of 8 week, the rats were allowed free access to water and standard chow. Sample group were administrated by Scutellaria Radix extract daily for 8 weeks. Results: The levels of hepatic marker such as aspartate aminotransferase and alanine aminotransferase were altered. Histopathological changes such as ballooning, fatty and hydropic degeneration were reduced and the expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) was significantly attenuated by Scutellaria Radix extract. Conclusions: These data suggest that Scutellaria Radix extract attenuated the alcoholic simple fatty liver by improving hepatic lipid metabolism via suppression of $TNF-{\alpha}$ protein. Scutellaria Radix could be effective in protecting the liver from alcoholic fatty liver.

Characterization of calumenin in mouse heart

  • Sahoo, Sanjaya Kumar;Kim, Do-Han
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.158-163
    • /
    • 2010
  • Calumenin is a multiple EF-hand $Ca^{2+}$-binding protein located in the endo/sarcoplasmic reticulum of mammalian hearts. Calumenin belongs to the CREC family of $Ca^{2+}$-binding proteins having multiple EF-hands. $Ca^{2+}$ homeostasis in the sarcoplasmic reticulum (SR) of mammalian hearts is maintained by RyR2, SERCA2 and other associated SR resident proteins. Evidence suggests that calumenin interacts with RyR2 and SERCA2, and therefore changes in the expression of calumenin could alter $Ca^{2+}$ cycling in mouse heart. In this review, current knowledge of the biochemical and functional roles of calumenin in mouse heart is described.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Effects of Scutellariae Radix on Neuronal Apoptosis of Spinal Cord Contusion Injury in Rats (황금(黃芩)이 척수압박손상 흰쥐의 척수신경세포 자연사에 미치는 영향)

  • Bahn, Hyo-Jung;Jo, Jong-Jin;Kim, Bum-Hoi;Park, Seong-Ha;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.4
    • /
    • pp.13-22
    • /
    • 2011
  • Objectives : This Study was performed to evaluate the effects of Scutellariae Radix(SR) water-extract on the tissue and neuronal apoptosis of the spinal cord injury(SCI). Methods: SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rats. SR was orally given once a day for 7 days after SCI. Neuronal apoptosis was examined with terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling(TUNEL) assay. Bax (Bcl-2-asociated X protein), Bcl-2(B-cell blastoma 2), c-Fos(FBJ osteosarcoma oncogene) expressions were examined using immuno-histochemistry. Individual TUNEL and immuno-labeled cells expressing Bax, Bcl-2 and c-Fos were counted on the same level in peri-damaged region and in ventral horn. Results: 1. SR significantly reduced number of TUNEL labeled apoptotic cells induced by the spinal cord contusion injury. 2. SR significantly reduced Bax positive cells expression on the motor neuron in the ventral horn induced by the spinal cord contusion injury. 3. SR strengthened Bcl-2 expression on the motor neuron in the ventral horn induced by the spinal cord contusion injury. 4. SR reduced c-Fos expression on the motor neuron in the ventral horn induced by the spinal cord contusion injury. Conclusions : These results suggest that SR plays an inhibitory role against neuronal apoptosis and has significant effects for locomotor disfunction induced by SCI.

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie;Wu, Jia-Ying;Deng, Yu-Yi;Wu, Ying;Wang, Xiao-Qi;Li, Amy Sze-man;Wong, Lut Yi;Fu, Xiu-Qiong;Yu, Zhi-Ling;Liang, Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.418-425
    • /
    • 2022
  • Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.