Browse > Article

Regulation of Contraction and $Ca^{2+}$ Transient by Histidine-rich $Ca^{2+}$-binding Protein in Ventricular Myocytes  

Son, Min-Jeong (College of Pharmacy, IDRD, Chungnam National University)
Kim, Joon-Chul (College of Pharmacy, IDRD, Chungnam National University)
Kim, Seong-Woo (College of Pharmacy, IDRD, Chungnam National University)
Ahn, Jong-Real (BK21 Physics Research Division, Sungkyunkwan University)
Woo, Sun-Hee (College of Pharmacy, IDRD, Chungnam National University)
Publication Information
YAKHAK HOEJI / v.56, no.6, 2012 , pp. 377-381 More about this Journal
Abstract
The histidine-rich $Ca^{2+}$ binding protein (HRC) is a $Ca^{2+}$ binding protein in the sarcoplasmic reticulum (SR). In this study, we examined whether the HRC is involved in the regulation of cardiac contraction and $Ca^{2+}$ signaling using HRC knock-out (KO) mouse ventricular myocytes. In field-stimulated single mouse ventricular myocytes, cell shortenings and $Ca^{2+}$ transients were measured using a video edge detection and a confocal $Ca^{2+}$ imaging, respectively. Compared with the wide-type (WT) myocytes, the magnitudes of cell shortenings were significantly larger in HRC KO cells (P<0.01, WT vs. KO). The rate of contraction and relaxation was significantly accelerated in HRC KO myocytes (P<0.05 and P<0.01, respectively, WT vs. KO). The magnitudes of $Ca^{2+}$ transients were increased by HRC KO (P<0.01, WT vs. KO). In addition, the decay of the $Ca^{2+}$ transient was faster in HRC KO cells than in wild-type cells P<0.01, WT vs. KO). These results suggest that HRC may suppress SR $Ca^{2+}$ releases and decay of $Ca^{2+}$ transients during action potentials, thereby attenuating ventricular contraction and relaxation.
Keywords
histidine-rich $Ca^{2+}$-binding protein (HRC); contraction; $Ca^{2+}$ transient; ventricular myocytes; knock-out;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. : Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800 (1989).   DOI
2 Guo, A. and Yang, H. T. : $Ca^{2+}$ removal mechanisms in mouse embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Cell. Physiol. 297, C732 (2009).   DOI   ScienceOn
3 Hofmann, S. L., Brown, M. S., Lee, E., Pathak, R. K., Anderson, R. G. and Goldstein, J. L. : Purification of a sarcoplasmic reticulum protein that binds $Ca^{2+}$ and plasma lipoproteins. J. Biol. Chem. 264, 8260 (1989).
4 Hofmann. S. L., Goldstin, J. L., Orth, K., Moomaw, C. R., Slaughter, C. A. and Brown, M. S. : Molecular cloning of a histidine-rich $Ca^{2+}$-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J. Biol. Chem. 264, 18083 (1989).
5 Picello, E., Damiani, E. and Margreth, A. : Low-affinity $Ca^{2+}$-binding sites versus $Zn^{2+}$ -binding sites in histidine-rich $Ca^{2+}$-binding protein of skeletal muscle sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 186, 659 (1992).   DOI   ScienceOn
6 Lee, H. G., Kang, H., Kim, D. H. and Park, W. J. : Interaction of HRC (histidine-rich $Ca^{2+}$-binding protein) and triadin in the lumen of sarcoplasmic reticulum. J. Biol. Chem. 276, 39533 (2001).   DOI   ScienceOn
7 Adachi-Akahane, S., Cleeman, L. and Morad, M. : Crosssignaling between L-type $Ca^{2+}$ channels and ryanodine receptors in rat ventricular myocytes. J. Gen. Physiol. 108, 435 (1996).   DOI   ScienceOn
8 Sham, J. S., Hatem, S. N. and Morad, M. : Functional coupling of $Ca^{2+}$channels and ryanodine recptors in cardiac myoyctes. Proc. Natl. Acad. Sci. U.S.A. 92, 121 (1995).   DOI   ScienceOn
9 Kim, E., Shin, D. W., Hong, C. S., Jeong, D., Kim, D. H. and Park, W. J. : Increased $Ca^{2+}$ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidinerich $Ca^{2+}$-binding protein). Biochem. Biophys. Res. Commun. 300, 192 (2003).   DOI   ScienceOn
10 Sacchetto, R., Damiani, E., Turcato, F., Nori, A. and Margreth, A. : Ca2+-dependent interaction of triadin with histidine-rich $Ca^{2+}$-binding protein carboxyl-terminal region. Biochem. Biophys. Res. Commun. 289, 1125 (2001).   DOI   ScienceOn
11 Gregory, K. N., Ginsburg, K. S., Bodi, I., Hahn, H., Marreez, Y. M., Song, Z., Padmanabhan, P. A., Mitton, B. A., Waggoner, J. R., Monte, D. F. and Park, W. J. : Histidine-rich Ca binding protein: a regulator of sarcoplasmic reticulum calcium sequestration and cardiac function. J. Mol. Cell. Cardiol. 40, 653 (2006).   DOI   ScienceOn
12 Woo, S. H., Cleemann, L. and Morad, M. : $Ca^{2+}$ current-gated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439 (2002).   DOI   ScienceOn
13 Lee, S. W., Kim, J. C., Li, Y., Son, M. J. and Woo, S. H. : Fluid pressure modulates L-type $Ca^{2+}$ channel via enhancement of $Ca^{2+}$-induced $Ca^{2+}$ release in rat ventricular myocytes. Am. J. Physiol.-Cell. Physiol. 294, C966 (2008).   DOI   ScienceOn
14 Arvanitis, D. A., Vafiadaki, E., Fan, G. C., Mitton, B. A., Gregory, K. N., Monte, F. D., Kontrogianni-Konstantopoulos, A. and Sanoudou, D. : Histidine-rich Ca-binding interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart. Circ. Physiol. 293, H1581 (2007).   DOI   ScienceOn