• Title/Summary/Keyword: SPRING

Search Result 9,571, Processing Time 0.034 seconds

Process Analysis and Test for Manufacturing the Sleeve Spring Type-Torsional Vibration Damper (슬리브 스프링 형식 비틀림 진동감쇠기 제조를 위한 공정해석 및 시험)

  • Hwang, Beom-Cheol;Bae, Won-Byong;Jang, Young-Jun;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1471-1481
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, the closed form equations to predict the spring constant of a sleeve spring and the torsional characteristics of the torsional vibration damper are proposed to calculate stiffness of the damper and verified their availability through the finite element analysis and experiments. And the stability of the sleeve spring torsional vibration damper is verified by analyzing the inner star and outer star, which are the core parts of the damper, and 2-roll bending process is proposed to manufacture sleeve spring. The program to calculate the initial radius including spring-back effect is developed, and the FEA method to analyze elasto-plastic problem was verified through analysis of 90$^{\circ}$bending process. The results of the analysis are in good agreements with those of the experiments. The newly proposed method can be used as an advanced technique that remarkably curtails cost of production and replaces the conventional forming.

Mechanical Characteristic Analysis of Coil Spring & Viscous Damper (Coil Spring & Viscous Damper System의 동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.19-26
    • /
    • 2007
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. Through this research nonlinear damping characteristics and the effective stiffness of coil spring and viscous damper system were evaluated.

Analysis of Sealing Effectiveness Based on Spring Stiffness of a Spring-Energized Static Seal (스프링 보강 정적 실의 스프링 강성에 따른 기밀 성능 해석)

  • Jang, Soo Yeon;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.307-312
    • /
    • 2018
  • Unlike a typical static seals, spring-energized static seals exhibit improvement in leak-tightness by reinforcing the spring inside the aluminum lining. Thus, spring-energized static seals are widely used in various industrial fields, such as aerospace, semiconductors, and petrochemical industries. The primary objective of this study is to develop design guidelines for spring-energized static seals in a wide range of temperatures, including that of cryogenic environments, by analyzing the required performance and influence of design variables through simulations. There are various parameters that can be controlled to design a leak-tight seal. In this study, the finite element analysis (FEA) is performed by controlling the parameters related to the spring and the thickness of the aluminum lining, and the result of the leakage between the seal and the casing is confirmed. Considering the influence of each parameters, all of them are found to be important. However, it is observed that the spring-related variables are more important than the aluminum lining or other variables when complexity is considered. We can identify the threshold value of spring stiffness that changes leak-tight performance of the seal by performing FEA. Simulation results, under the conditions that are considered in this study, show that spring stiffness should be at least 3.6 N/m to maintain leak-tightness caused by the sufficient contact force between the aluminum lining and the upper and lower casings.

The spring back of Automobile body panel (자동차 Panel의 Spring back에 대한 연구)

  • CHOI Y. H.;YOO C. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.148-153
    • /
    • 2002
  • Spring back is the typical deformation of pressing process. This phenomenon much affects productivity and especially Incurs the unexpected result of assembling process. We have been searching for the various of the spring back to minimize spring back effect, because it is inevitable.

  • PDF

Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

Evaluation of the Spring Constant of a Micro Coil Spring (마이크로 코일 스프링의 스프링 상수 평가)

  • Lee J. K.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.255-259
    • /
    • 2001
  • The spring constant of a micro coil spring was measured by uniaxial tensile test. The inner diameter of it is $35{\mu}m$ and the pitch size is about $23{\mu}m$. A suing constant measurement system was developed. It consists of control units, load cell units, linear stages and several specially designed jigs and fixtures. Load and displacement are measured using a commercial load cell of 1000g capacity and a magnetic scale of $0.5{\mu}m$ resolution. In this study, a method to measure the spring constant of micro coil spring is presented and the relationship between misalignment of specimen and measurement error is discussed.

  • PDF

Performance Test and Finite Element Analysis of Air Spring for Automobile (승용차용 에어스프링의 유한요소해석 및 성능시험)

  • Huh, Shin;Woo, Chang-Soo;Han, Houk-Seop;Kim, Wan-Doo;Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.725-731
    • /
    • 2007
  • An air spring which is a part of the suspension system of automobiles is used to reduce and absorb the vibration and the noise. Main components of the air spring are a cord reinforced rubber bellows, a canister and a piston. The performance of the air spring are depended on configurations of rubber bellows, the angle and elastic modulus of cord. The finite element analysis are executed to predict and evaluate the load capacity and the stiffness. The design variables of air spring are determined to adjust the required specifications of the air spring. Several samples of the air spring are manufactured and experimented. It is shown that the results by finite element analysis are in close agreement with the test results.

Study on the Vibration Analysis of Damper Clutch Spring (댐퍼 클러치 스프링의 진동 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.

Spring Position and Stiffness Effect on the Dynamic Stability of Elastically Restrained Cantilevered Beams under a Follower Force (종동력을 받는 탄성지지된 외팔보의 동적 안정성에 미치는 스프링위치와 상수의 영향)

  • 류봉조;권경우;명태식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1496-1502
    • /
    • 1994
  • The influences of spring position and spring stiffness on the critical force of a cantilevered beam subjected to a follower force are investigated. The spring attatched to the beam is assumed to be a translational one and can be located at arbitrary positions of the beam as it has not been assumed so far. The effects of transeverse shear deformation and rotary intertia of the beam are also included in this analysis. The charateristic equation for the system is derived and a finite element model of the beam using local coordinates is formulated through extended Hamilton's principle. It is found that when the spring is located at position less than that of 0.5L, the flutter type instability only exists. It is shown that the spring position approaches to the free end of the beam from its midpoint, instability type is changed from flutter to divergence through the jump phenomina according to the increase of spring stiffness.

Influence of Spring Dynamics and Friction on Dynamic Responses in a Spring-Driven Cam (스프링구동 캠에서 마찰과 스프링운동이 동적응답에 미치는 영향)

  • Ahn, Kil-Young;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.247-254
    • /
    • 2003
  • The paper presents the influence of spring dynamics and friction on dynamic responses in a spring-driven cam system. The characteristics of the friction on the camshaft are analyzed using the nonlinear pendulum experiment while the parameters of the friction model are estimated using the optimization technique. The analysis reveals that the friction of the camshaft depends on stick-slip, Stribeck effect and viscous damping. Spring elements are found to have much influence on the dynamic characteristics. Hence, they are modeled as four-degree-of-freedom lumped masses with equivalent springs. The appropriateness of the derived friction model and spring model is verified by its application to a vacuum circuit breaker mechanism of the cam-follower type.