• Title/Summary/Keyword: SPOOL

Search Result 216, Processing Time 0.027 seconds

Transient simulation and experiment validation on the opening and closing process of a ball valve

  • Han, Yong;Zhou, Ling;Bai, Ling;Xue, Peng;Lv, Wanning;Shi, Weidong;Huang, Gaoyang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1674-1685
    • /
    • 2022
  • The ball valve is an important device in the pipeline transportation system of nuclear power plants. Its operational stability and safety directly affect the normal working of nuclear power plants. In this study, the transient numerical simulation of the opening and closing process of a ball valve was conducted on the basis of the flow interruption capability experiment of the ball valve by using the moving mesh method and inlet and outlet variable boundary conditions. The flow rate and pressure difference with time of the opening and closing process of the ball valve were studied. The internal flow characteristics of the ball valve under different relative openings were analyzed in conjunction with the typical back-step flow structure. Results show that the transient numerical results agree well with the experimental results. The internal flow characteristics of the ball valve are similar at the same opening during opening and closing process. At small opening, the spool and outlet channels easily form a back-step flow structure. The disappearance and generation of backflow vortices during opening and closing occur at 85% opening and 75% opening, respectively. With the decrease in opening degree, the difference in vortex core area in the flow channel of the ball valve spool in the opening and closing process gradually appears. The research results provide some reference value for the design and optimization of ball valves.

Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve (전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증)

  • Cheon, Su Hwan;Park, Jin Kam;Jang, Kyoung Je;Sim, Sung Bo;Jang, Min Ho;Lee, Jin Woong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Numerical Analysis of Proportional Pressure Control Valve using Bondgraph (본드선도를 이용한 비례전자 감압밸브의 수치해석)

  • Yang, K.U.;Hue, J.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.62-70
    • /
    • 2008
  • The paper made a description of the method for numerical analysis and modeling of a proportional pressure control valve by bondgraph. The valve is a three port pressure regulator valve, consists of two subsystems; a proportional solenoid and a spool assembly. A purpose of this study is to analysis the dynamic characteristics of the valve using bondgraph method and to verified results that each of parameters has an effect on modeling. It considered the effect which the presence of solenoid, flow coefficient and non-linearity of resistance causes in the valve modeling. In particular, it is analyzed the effect that the solenoid interacted with modeling results and characteristics of the nonlinear resistance through orifice on the supply and discharge side of valve. Thus this paper described method to present nonlinear characteristics by bondgraph modeling method, so that we could know easily result that each parameters has an effect on the modeling.

  • PDF

A Study on the Hydraulic Cylinder with built-in Displacement and Thrust Control Function

  • Kitagawa, Ato;Wu, Chunnan;Park, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1157-1161
    • /
    • 2003
  • A novel actuator with built-in the displacement and the thrust control function is presented in this paper. This actuator is a kind of compact hydraulic cylinder system which consists of a hydraulic cylinder, a spool, a sleeve, a mechanical feedback mechanism and a stepping motor. The displacement and thrust is in proportion to the rotational angle of stepping motor by the mechanical feedback. In order to investigate characteristics of this actuator, simulation study and preliminary experiments are conducted. Through the preliminary experiment this actuator is very effective in the control for displacement and thrust. Also, it became obvious that the stability of system can be adjusted by using the restrictor with the effect of velocity feedback. Furthermore, this paper explained that a flexible compliance control could be realized by adjusting the feedback weighting in the actuator.

  • PDF

Implementation of a Low-cost Fiber Optic Gyroscope for a Line-of-Sight Stabilization System (Line-of-Sight 안정화 시스템을 위한 저가형 광자이로스코프 구현)

  • Yoon, Yeong Gyoo;Lee, Sang-Min;Kim, Jae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.168-172
    • /
    • 2015
  • In general, open-loop fiber-optic gyroscopes (FOG) are less stable than closed-loop FOGs but they offer simpler implementation. The typical operation time of line-of-sight (LOS) stabilization systems is a few seconds to one hour. In this paper, a open-loop fiber optic gyroscope (FOG) for LOS applications is designed and implemented. The design goal is aimed at implementing a low cost, compact FOG with low Angle Random Walk (ARW) (< $0.03deg/\sqrt{h}$) and bias instability (< 0.25deg/h). The FOG uses an open-loop all-fiber configuration with 100M PM fiber wound on a small diameter spool. In order to get the design goal, digital signal processing techniques for signal detection, modulation control and compensation are designed and implemented in FPGA.

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

A numerical analysis for internal fluid flow of a PCV valve by using moving mesh (Moving Mesh를 이용한 PCV 밸브의 내부유동 수치해석)

  • Lee, J.H.;Choi, Y.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.40-44
    • /
    • 2005
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe but residual gas, is called "Blowby gas", enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the crankcase isn't vented, this causes many bad effects such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So, most automobiles are constituted with a PCV (Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new engines, engineers are designing it depending on their experiments than theoretical knowledge. Mush efforts and times are needed for new development. This study will show quantitative results to increase the possibilities of reduction of developing time.

  • PDF

Welding Deformation of The PLS Storage Ring Chamber (포항가속기 저장링 Chamber의 용접변형)

  • 최만호;김효윤;한영진;최우천
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 1993
  • 1)sector chamber II에서 가장 우려되었던 J5, J8의 변형량이 $28\mu\textrm{m}$,$36\mu\textrm{m}$ 이었으므로 목표 값 $50\mu\textrm{m}$을 충분히 보증할 수 있다. 2) Helicoflex gasket type으로 제작된 초도품 챔버에서는 140.deg.C bake-out후 이온 펌프만 으로 20시간 진공배기한 후의 진공도는 2*$10^{-9}$ Torr에 도달하였으며, 용접 type으로 제 작된 챔버에서는 2*$10^{-10}$ Torr에 도달하여서 진공도도 우수하였다. 3)표면조도에 민감한 Helicoflex gasket를 사용하지 않고 알루미늄 플랜지를 용접하여 AI gasketc 를 이용할 수 있기 때문에 초도품챔버에서와 같이 알루미늄 챔버와 스텐레스 스틸 부품을 연결하 는 stainless spool piece가 필요하지 않게 된다. 4)고가의 helicoflex gasket을 쓰지 않으므로 가격절감을 할 수 있다.

  • PDF

Parametric Cycle Analysis of a Turbofan Engine with Turbine Cooling (터보팬 엔진에서 터빈 냉각이 성능에 미치는 영향에 대한 수치적 해석)

  • Hwang, Jin-Seok;Moon, Hee-Jang;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • Parametric cycle analysis of a dual-spool, mixed exhaust turbofan engine with turbine blade cooling were described to investigate the effect of turbine blade cooling on the engine performance such as specific thrust and thrust specific fuel consumption. Coolant of low pressure turbine triggers high engine performance loss and cooling effect loss in high pressure turbine. Therefore low pressure turbine coolant should be much more considered for effective design.

  • PDF