DOI QR코드

DOI QR Code

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling

2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링

  • Seungheon Lee (Department of Aerospace Engineering, Inha University) ;
  • Hyoung Jin Lee (Department of Aerospace Engineering, Inha University) ;
  • Sangjo Kim (Aerospace Technology Research Institute 3rd Directorate Team 2, Agency for Defense Development) ;
  • Gyujin Na (Aerospace Technology Research Institute 3rd Directorate Team 2, Agency for Defense Development) ;
  • Jung Hoe Kim (Aerospace Technology Research Institute 3rd Directorate Team 2, Agency for Defense Development)
  • Received : 2022.11.10
  • Accepted : 2022.12.11
  • Published : 2023.02.28

Abstract

In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

본 연구에서는 정상 상태 및 천이 상태에 따른 항공기용 터보팬 엔진의 성능해석 모델링을 수행하였다. 대상 엔진은 Pratt & Whitney 사의 F100-PW-229으로 선정하여 팬, 고압 압축기, 연소기, 고압터빈, 저압 터빈, Mixer, 수축-확산형 노즐 등의 구성품을 모델링하였다. 또한, 이차 유로를 통한 터빈에서의 냉각 효과를 적용하였다. Simulink를 이용하여 터보팬 엔진 성능해석 프로그램을 자체 개발함에 따라 해석의 자유도가 높으며, 엔진 제어기 설계에 활용이 용이한 구성의 성능해석 프로그램을 개발하였다. 개발된 성능해석 프로그램은 상용 프로그램인 GASTURB 해석 결과와의 비교를 통하여 검증하였다.

Keywords

Acknowledgement

이 논문은 2021년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임 (912920201).

References

  1. Song, D.G. and Je, H.J., "Proposal for domestic development of advanced aviation engines," Korea Research Institute for Defense Technology Planning and Advancement, Vol. 1, 2022
  2. Belov, S., Nikolaev, S. and Uzhinsky, I., "Hybrid Data-Driven and Physics-Based Modeling for Gas Turbine Prescriptive Analytics," International Journal of Turbomachinery Propulsion and Power, Vol. 5, No. 4, p. 29, 2020.
  3. Kim, S.J., Kim, Y.I., Lee, S.C. and Kim, M.H., "Application of Performance Analysis Programs During Development of a Turbofan Engine," Proceedings of the Korean Society of Propulsion Engineers Fall Conference, Busan, Korea, pp. 349-350, Nov. 2020.
  4. Chapman, J.W., Lavelle, T.M., May, R.D., Litt, J.S. and Guo, T.-H., "Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide," NASA/TM-2014-216638, Jan. 2014.
  5. Jonathan S. Litt, "Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) Users' Workshop Presentations," NASA/CP-2018-219785, Aug. 2017.
  6. Choo, K.S. and Sung, H.G., "Steady-state Performance Simulation and Operation Diagnosis of a 2-spool Separate Flow Type Turbofan Engine," Journal of Aerospace System Engineering, Vol. 13, No. 1, pp. 38-46, 2019.
  7. Kang, M.C., Ki, J.Y. and Kong, C.D., "A Study on Performance Analysis of Turbofan Engine using EASY5," Proceedings of the Korean Society for Aeronautical and Space Sciences Spring Conference, Seoul, Korea, pp. 445-448, Apr. 2002.
  8. Kong, C.D., Kang, M.C. and Park, G.L., "Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK," Journal of the Korea Society of Propulsion Engineers, Vol. 17, No. 1, pp. 70-79, 2013. https://doi.org/10.6108/KSPE.2013.17.1.070
  9. Kong, C.D., Koh, K.U. and Ki, J.Y., "A Study on Steady-state Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine(I)," Journal of the Korea Society of Propulsion Engineers, Vol. 2, No.2, pp. 47-55, 1998.
  10. Fentaye, A.D., Baheta, A.T., Gilani, S.I. and Kyprianidis, K.G., "A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities," Aerospace, Vol. 6, No. 83, 2019.
  11. Kong, C.D., Kang, M.C., Park, G.L. and Ki, J.Y., "A Study on Diagnostics of 2-spool Turbofan Engine using GA," Proceedings of the Korean Society of Propulsion Engineer Spring Conference, Busan, Korea, pp. 832-837, May 2013.
  12. Lee, D.S. and Sung, H.G., "Fault diagnostics for Turbofan Engine Using Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO)," Proceedings of the Korean Society for Aeronautical & Space Sciences Spring Conference, Samcheock, Korea, pp. 303-304, July 2021.
  13. Kim, S.J., Kim, D.H., Kim, K.S., Son, C.M., Kim, Y.I. and Min, S.K., "The Performance Modeling of a Mixed Flow Turbofan Engine," Proceedings of the Korean Society of Propulsion Engineers Conference, Gumi, Korea, pp. 592-596, May 2012.
  14. Choi, W., You, J.H. and Lee, I.W., "The Performance Modeling of a Low Bypass Turbofan Engine for Supersonic Aircraft," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 6, pp. 79-88, 2010.
  15. Koff, B.L., "F100-PW-229 Higher Thrust in Same Frame Size," Journal of Engineering for Gas Turbines and Power, Vol. 111, No. 2, pp. 187-192, 1989. https://doi.org/10.1115/1.3240235
  16. Kurzke, J. and Halliwell, I., Propulsion and Power: An Exploration of Gas Turbine Performance Modeling, Springer, Berlin, Germany, 2018.
  17. Szuch, J.R., Seldner, K. and Cwynar, D.S., "Development and Verification of Real-Time, Hybrid Computer Simulation of F100-PW-100(3) Turbofan Engine," NASA Technical Paper 1034, 1977.
  18. Walsh, P.P. and Fletcher, P., Gas-Turbine Performance, 2nd, Wiley-Blackwell, New York, U.S.A., 2004.
  19. Cumpsty, N.A., Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design Performance of Jet Engine, 2nd, Cambridge University Press, Cambridge, England, 2003.
  20. Mattingly, J.D., Elements of Propulsion: Gas Turbines and Rockets, American Institute of Aeronautics and Astronautics, Inc., Reston, VA, U.S.A., 2006.