• Title/Summary/Keyword: SPEEK

Search Result 54, Processing Time 0.022 seconds

High Temperature Water Electrolysis of Covalently Cross-linked CL-SPEEK/Cs-TSiA/Ceria Composite Membrane (공유가교 CL-SPEEK/Cs-TSiA/Ceria 복합막의 고온 수전해 성능)

  • JUNG, HYEYOUNG;YOON, DAEJIN;CHUNG, JANGHOON;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.433-439
    • /
    • 2017
  • The high temperature performance of PEM type electrolyser at $120^{\circ}C$ based on covalently cross-linked sulfonated poly ether ether ketone (SPEEK) composie membrane was investigated. Ion conductivity and other properties of SPEEK membrane were improved by adding heteropoly acid and Ceria. The membrane electrode assemblies were prepared using commercial PtC and nano-sized $IrRuO_2$ catalyst by electro-spraying and decal process. Voltage efficiency of MEA equipped with SPEEK membrane was slightly better than that of $Nafion^{(R)}$ membrane, due to its higher proton conductivity at high temperature. The cell performance of MEA with CL-SPEEK/Cs-TSiA/Ceria is 1.71 V at $1A/cm^2$ and $120^{\circ}C$.

Preparation and Characterization of SPEEK/Cellulose Polymer Composite Membranes for Water Electrolysis (수전해용 술폰화 폴리에테르 에테르 케톤과 셀룰로오스 고분자 복합막의 제조 및 특성)

  • SONG, YURI;CHA, JINSAN;YOON, YOUNGYO;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.478-484
    • /
    • 2016
  • Polyether ether ketone (PEEK) composite membranes have been intensively investigated for polymer electrolyte membrane water electrolysis (PEMWE). Covalently linked (CL) sulfonated polyether ether ketone (SPEEK) and cellulose polymer composite membranes were prepared and characterized. Polyether ether ketone (PEEK) and cellulose were sulfonated and then were covalently linked by 1,4-diiodobutane to produce covalently linked SPEEK and cellulose polymer composite membranes. The composite membranes showed better thermostability and electrochemical properties than SPEEK. The membranes were prepared by sol-gel casting method. CL-SPEEK/Cellulose composite membrane featured 0.2453 S/cm of proton conductivity at $80^{\circ}C$ which was better than that of Nafion.

The Characterization of Crosslinked SPEEK Based Ion Exchange Membranes Prepared by EB Irradiation Method (전자선을 이용해 가교된 SPEEK 기본 물질로 하는 이온 교환막의 특성 분석)

  • Song, Ju-Myung;Shin, Junhwa;Sohn, Joon-Yong;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.151-157
    • /
    • 2011
  • Crosslinked SPEEK/PVDF membrane were prepared by EB radiation method with various contents of PVDF. The prepared membranes were subjected to a comparative study of proton exchange membranes for fuel cell appreciations. The crosslinked SPEEK/PVDF membranes were characterized by using DMA, DSC and SAXS. The DMA data indicate that the ionic modulus values and cluster $T_g$ decrease with increasing PVDF content. Thus, it was suggested that the number of clustering in the crosslinked membranes can be reduced with increasing PVDF content. The DSC results were shown that the degree of crystalline of the membrane increased with increasing PVDF content. The morphology of the crosslinkied membranes was shown that with increasing PVDF content, the number of crystalline domain of the SPEEK/PVDF membranes increased but ionic aggregation of the membranes decreased. The water uptake behavior, ionic exchange capacity (IEC) and proton conductivity were decreased with increasing PVDF content. The overall findings suggest that the crosslinked membranes offer the possibility for improving the performance of PEMFC, provided that the membranes have thermal and hydration stability.

Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC (PEMFC용 설폰화 Poly(ether ether ketone) (SPEEK) 전기방사 나노섬유 이온교환막의 제조 및 특성)

  • Kwak, Noh-Seok;Choi, Eun-Jung;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Sulfonated poly(ether ether ketone) (SPEEK) nanofibers were prepared by electrospinning. The nanofibrous membrane for polymer electrolyte membrane fuel cell (PEMFC) was fabricated by compression molding. The maximum degree of sulfonation was 95% and the initial thermal degradation temperature was $280^{\circ}C$ and it's value was lower than that of PEEK. The contact angle of SPEEK increased with decreasing the degree of sulfonation. The optimum voltage, flow rate, tip to collector distance (TCD) and concentration of electrospinning conditions were 22 kV, 0.3 mL/hr, 15 cm, and 23 wt%, respectively. The average nanofibrous diameter was 47.6 nm. The water uptake and ion exchange capacity of SPEEK nanofibrous membrane increased with increasing the sulfonation time and the amount of sulfonating agent. The electrical resistance and proton ionic conductivity of SPEEK membrane increased with decreasing and increasing the sulfonation time, respectively. Their values were 0.58~0.06 ${\Omega}{\cdot}cm^2$and 0.099 S/cm.

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis (PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조)

  • Lee, Hyuck-Jae;Jung, Yun-Kyo;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

The Effect of Proton Conductivity of SPEEK Composite Membrane with Organic Compounds for DMFC

  • You, S.K.;Kim, H.J.;Shin, H.S.;Kim, J.S.;Choi, W.K.;Park, S.G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.167-172
    • /
    • 2009
  • Direct methanol fuel cells(DMFCs) are receiving significant attention in the portable power source and electric vehicular transportation because of its high energy efficiency as liquid fuel, low cost, and no requirement of fuel reforming process. In this study, we synthesized the Sulfonated poly(ether ether ketone) (SPEEK) to evaluate the possibility of use as a proton exchange membrane for DMFC. And poly(vinylidienedifluoride) (PVDF) was used to increase proton conductivity in SPEEK and simultaneously to prevent methanol transport through the cross linked membrane. Furthermore, in order to improve the electrical composite properties for DMFC applications.

Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis (MoSiA를 이용한 수전해용 공유가교 SPEEK/Cs-MoSiA/Ceria복합막의 제조 및 성능 연구)

  • SEO, HYUN;SONG, YU-RI;OH, YUN-SUN;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.524-531
    • /
    • 2015
  • To improve the electrochemical and mechanical characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The SPEEK organic-inorganic blended composite membranes were prepared by sol-gel casting method. It was loaded with the highly dispersed ceria and cesium-substituted molybdosilicic acid (Cs-MoSiA) and 1,4-diiodobutane which was cross-linking agent contents of $10{\mu}L$. Cs-MoSiA was added to increase proton conductivity. Ceria ($CeO_2$) was used as a free radical scavenger which degrade the membrane in polymer electrolyte membrane water elctrolysis (PEMWE). In conclusion, CL-SPEEK/Cs-MoSiA/Ceria 1% composite membrane showed high proton conductivity 0.2104 S/cm at $25^{\circ}C$ which was better than Nafion 117 membrane.

Study of Synthesis and Performance of Covalently Cross-Linked SPEEK/Cs-TSiA Composite Membranes with Ceria Contents for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구)

  • YOON, DAE-JIN;OH, YUN-SUN;SEO, HYEON;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • The engineering plastic of sulfonated polyether ether ketone (SPEEK) as a polymer matrix has been developed in this lab to replace Nafion, solid polymer electrolytes of perfluorosulfonic acid membrane which has several flaws such as high cost, and limited operational temperature above $80^{\circ}C$. The SPEEK was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstosilicic acid (Cs-TSiA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TSiA/ceria 1% membrane showed the optimum results such as 0.1882 S/cm of proton conductivity at $80^{\circ}C$, and 99.61 MPa of tensile strength which were better than Nafion 117 membrane.

Synergistic Effect of Sulfonated Poly(Ether Ether Ketone)/Strontium Zirconate Perovskite Nanofiber-Based Novel Electrospun Composite Membranes for Fuel Cell Applications (연료전지용 술폰화된 폴리(이써 이써 케톤)/스트론튬 지르코네이트 페로브스카이트 나노섬유 기반 신규 전기방사 복합막의 시너지 효과)

  • SELVAKUMAR, KANAKARAJ;KIM, AE RHAN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.164-175
    • /
    • 2022
  • In this work, sulfonated poly (ether ether ketone) (SPEEK) composite membranes including strontium zirconate (SrZrO3) were fabricated by the electrospinning method. Fourier-transform infrared spectroscopic analysis and X-ray diffraction analysis were used to identify the chemical structure and the crystallinity of SrZrO3 and electrospun composite membranes. The thermal stability of the pure SPEEK and SPEEK/SrZrO3 electrospun composite membranes were investigated by using thermogravimetric analysis. The physicochemical properties and proton conductivity were enhanced with the addition of different weight ratio of SrZrO3 nanofiller (2, 4 and 6 wt%) in SPEEK polymer. The optimized SPEEK/SrZrO3-4 electrospun membrane containing 4 wt% of SrZrO3 showed a high proton conductivity compared to other electrospun SPEEK/SrZrO3 composite membranes. The results indicate that electrospun composite membranes incorporating these perovskite nanofillers should be explored as potential candidates for use in proton exchange membrane fuel cells.

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis ($Cs^+$치환에 따른 수전해용 공유가교 SPEEK/HPA 복합막의 안정화)

  • Jee, Bong-Chul;Ha, Sung-In;Song, Min-Ah;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.