• Title/Summary/Keyword: SPATIAL SCALE

Search Result 1,673, Processing Time 0.029 seconds

Study on the Selection of the Basin Characteristics Parameters in River Basin Using Satellite Images and GIS (위성영상(衛星映像)과 GIS를 이용한 하천유역(河川流域)의 유역특성인자(流域特性因子) 추출(抽出)추출 관한 연구(硏究))

  • Jo, Myung-Hee;Ahn, Seung-Seop
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.121-134
    • /
    • 1998
  • In this study, the satellite images and the GIS technique are used to select the basin characteristics parameters as the basis of water resources management of river basin. The study area is Geum-ho river basin and the hydrologic characteristics data are computed through the database of the basin characteristics parameters classified by subjects with 35 maps correspond to the study basin of 1:25,000 scale as the basic map. As the result, the drawing up of land use map through satellite image processing that provides the quantitative informations for the land is very efficient to analysis the extensive land use information of the basin, and exact analysis of mass surface data is possible and the feasibility of statistic computation between spatial subjects as it superpose on other subject map is ascertained. It is thought also that the analysis of the basin characteristics data can be utilized very effectively for the basin management and the analysis of basin surface area, once it is expressed numerically for database, since the superposition analysis with different subject map and the correlative analysis with the property data are possible although the tracing process of each subject in the basic map is not efficient. Especially, modification and renewal of the data for the change of land surface become easy, therefore more rapid and exact selection of the basin characteristics data and the construction of more efficient basin management plan are possible.

  • PDF

Exploring the Applicability of Grain Size Trend Analysis to Understanding the Morphological Responses of the Deltaic Barrier Islands in the Nakdong River (낙동강 삼각주연안 사주섬의 지형변화에 대한 입도경향 분석의 활용도 탐색)

  • Kim, Sung-Hwan;Rhew, Ho-Sahng
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Grain-size trend analysis is the methodology to obtain the net sediment transport pattern from the spatial trends of grain size parameters. It has the potentials to be an effective tool to address the morphological changes of the deltaic barrier islands in the Nakdoog River once we make sure net transport patterns inferred from grain size trend analysis represent the morphological evolution patterns. This research aims to investigate the applicability of the net transport patterns obtained by 'transport vector', proposed by Gao and Collins(1992), to understanding the morphological changes of the Nakdong River deltaic barrier islands. The results indicate that the net transport directions are overall in concordance with the morphological evolution patterns; however, the level of concordance is low in the island with fast growing rate. The reasons may be match or mismatch of temporal scales involved between processes represented by net transport patterns and morphological change analyzed or the rate of morphological change. Consequently, the application of grain size trend analysis in analyzing the morphological changes of deltaic barrier islands requires the careful consideration of temporal scales involved.

  • PDF

Physically Based Landslide Susceptibility Analysis Using a Fuzzy Monte Carlo Simulation in Sangju Area, Gyeongsangbuk-Do (Fuzzy Monte Carlo simulation을 이용한 물리 사면 모델 기반의 상주지역 산사태 취약성 분석)

  • Jang, Jung Yoon;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.239-250
    • /
    • 2017
  • Physically based landslide susceptibility analysis has been recognized as an effective analysis method because it can consider the mechanism of landslide occurrence. The physically based analysis used the slope geometry and geotechnical properties of slope materials as input. However, when the physically based approach is adopted in regional scale area, the uncertainties were involved in the analysis procedure due to spatial variation and complex geological conditions, which causes inaccurate analysis results. Therefore, probabilistic method have been used to quantify these uncertainties. However, the uncertainties caused by lack of information are not dealt with the probabilistic analysis. Therefore, fuzzy set theory was adopted in this study because the fuzzy set theory is more effective to deal with uncertainties caused by lack of information. In addition, the vertex method and Monte Carlo simulation are coupled with the fuzzy approach. The proposed approach was used to evaluate the landslide susceptibility for a regional study area. In order to compare the analysis results of the proposed approach, Monte Carlo simulation as the probabilistic analysis and the deterministic analysis are used to analyze the landslide susceptibility for same study area. We found that Fuzzy Monte Carlo simulation showed the better prediction accuracy than the probabilistic analysis and the deterministic analysis.

A Study on the Characteristics of Korean Townscape in Perspective of the Oriental World View (동양적 세계관의 관점에서 본 한국도시경관의 특성)

  • 김한배;이규목
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.4
    • /
    • pp.55-68
    • /
    • 1994
  • It has been generally agreed that the city form especially in the preindustrial age resembled their own world view, either in the western or the eastern cultural sphere. So, we aimed to redefine the characteristics of oriental world views compared with the western one, in order to find the relative nature of the Korean townscapes. It is said that the both world views(of western and oriental) are composed of the contrastive binary concepts in common, but there seems to have been nearly contrary differences in these two world views. Wheareas the former was based on the passively segregational and oppositional dualism, the latter, on the dynamically harmonious and complementary dualism, called generally as 'Yin(陰) and Yang(陽)'. Thus, the oriental world view can be thought as the 'philosophy of the relationship', which aim to unify the dualism ultimately with the help of this relationship. So, we can assume a certain third and intermediate concept between these dual concepts of the world view, which can unify these two into the one holistic whole. And the focuses of the most traditional oriental philosophies were concentrated on this, so called, 'the third concept', namely Taoistic 'Tochu(道樞)', Buddhistic 'Kong(空)' or Confucian 'Chung(中)'. And this triple concept, including the third one, of the oriental world view revealed a more concrete form of the cosmological relationship, as the triple structure; 'Heaven(天), Earth(地), and Man(人)', in which the 'Man' is thought as the middle or the center of the world. In this manner, we could found this oriental 'triple world view' was revealed in the real topology of most places in the Korean traditional city and the whole townscape itself. So, in the scale of houses and the roads around them, we can construe the 'Maru(a central board-floored room)' and the 'Madang(a inner court)' as the 'third and intermediate space(中)' between the interior space(陰) and exterior space(陽) in the former, and between the private house(陰) and the public residential road(陽) in the former case, and between the dual parts(陰,陽) of the city representing the contrary social classes and the contrastive visual landscapes. So, we insist that this 'triple world view' represented in the townscape can be one of the most important characteristics of Korean traditional townscape. And this third intermediate spaces, which generate the active social contact and the harmonious relationship among the people, can be the most important cues, as the central places, in the interpretation of the Korean townscapes even in contemporary circumstance, which inherits its spatial and social frame more or less from the preceding one.

  • PDF

Accuracy and Economic Evaluation for Utilization of National/Public Land Actual Condition Survey Using UAV Images (국공유지 실태조사 활용을 위한 UAV 영상의 정확도 및 경제성 평가)

  • Lee, Sang Chan;Kim, Jun Hyun;Um, Jung Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.175-186
    • /
    • 2017
  • In this study was to survey method of national/public land actual condition survey to utilization of UAV, in order to evaluate the economic and accuracy. we carried out the comparative evaluation of the cadastral status surveying in terms of accuracy of parcel checkpoint, economical costs. The results are summarized as follows. First, average position error of the orthoimage was 0.033m in X error, 0.023m in Y error when the RMSE average calculated 0.046m from the intersection of plane distance connections. Secondly, it was appeared the accuracy of the orthophotograph is 0.076m at the maximum RMSE of the UAV orthoimage check point and 0.042m at the minimum RMSE compared with the VRS-GNSS survey results. Thirdly, when the allowable error specified in the implementing regulation of the current cadastral survey is applied, all of the checkpoint of 0.360m tolerance corresponding to the scale of 1/1,200 is satisfied. Finally, UAV utilization method in national/public land actual condition survey is 26,497,436(KRW) cheaper than cadastral survey method for In the economic evaluation of national/public land actual condition survey. Therefore, as a result of this study shows that the method of utilizing UAV in the national/public land actual condition survey satisfies legal standards in terms of accuracy and economical aspect is a way to further reduce the local government budget.

Change Detection of Land Cover Environment using Fuzzy Logic Operation : A Case Study of Anmyeon-do (퍼지논리연산을 이용한 토지피복환경 변화분석: 안면도 사례연구)

  • 장동호;지광훈;이현영
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.305-317
    • /
    • 2002
  • The purpose of this study is to analyze the land cover environmental changes in the Anmyeon-do. Especially, it centers on the changes in the land cover environment through methods of GIS and remote sensing. The land cover environmental change areas were detected from remote sensing data, and geographic data sets related to land cover environment change were built as a spatial database in GIS. Fuzzy logic was applied for data representation and integration of thematic maps. In the natural, social, and economic environment variables, the altitude, population density, and the national land use planning showed higher fuzzy membership values, respectively. After integrating all thematic maps using fuzzy logic operation, it is possible to predict the change quantitatively. In the study area, a region where land cover change will be likely to occur is the one on a plain near the shoreline. In particular, the hills of less than 5% slope and less than 15m altitude, adjacent to the ocean, were quite vulnerable to the aggravation of coastal environment on account of current, large-scale development. In conclusions, it is expected that the generalized scheme used in this study is regarded as one of effective methodologies for land cover environmental change detection from geographic data.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

Implementation of virtual reality for interactive disaster evacuation training using close-range image information (근거리 영상정보를 활용한 실감형 재난재해 대피 훈련 가상 현실 구현)

  • KIM, Du-Young;HUH, Jung-Rim;LEE, Jin-Duk;BHANG, Kon-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.140-153
    • /
    • 2019
  • Cloase-range image information from drones and ground-based camera has been frequently used in the field of disaster mitigation with 3D modeling and mapping. In addition, the utilization of virtual reality(VR) is being increased by implementing realistic 3D models with the VR technology simulating disaster circumstances in large scale. In this paper, we created a VR training program by extracting realistic 3D models from close-range images from unmanned aircraft and digital camera on hand and observed several issues occurring during the implementation and the effectiveness in the case of a VR application in training for disaster mitigation. First of all, we built up a scenario of disaster and created 3D models after image processing with the close-range imagery. The 3D models were imported into Unity, a software for creation of augmented/virtual reality, as a background for android-based mobile phones and VR environment was created with C#-based script language. The generated virtual reality includes a scenario in which the trainer moves to a safe place along the evacuation route in the event of a disaster, and it was considered that the successful training can be obtained with virtual reality. In addition, the training through the virtual reality has advantages relative to actual evacuation training in terms of cost, space and time efficiencies.

Construction of Mine Geospatial Information by Total Station and 3D Laser Scanner (토털스테이션과 3D 레이저 스캐너에 의한 광산공간정보 구축)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.520-525
    • /
    • 2019
  • Mines are an important infrastructure for securing resources, but safety problems can arise in the course of operation. Recently, the mining process is very complicated due to the large scale and mechanization. Therefore, it is necessary to construct accurate geospatial information on mine for systematic and safe mine operation. The geospatial information construction using the existing total station has a disadvantage that a lot of work time is required because the target must be collimated and measured. In this study, the data of the mines were acquired with the total station and the 3D laser scanner, and the mine spatial information was constructed by using the shape based registration method. By using the static scanner data of some area applying the reference point surveying result of the total station, it was possible to construct the accurate result on the wide area acquired by the mobile scanner effectively. Also, the accuracy of the constructed geospatial information was evaluated and the deviation of mean 0.083m was shown. Point cloud products constructed through the research can contribute to the efficiency improvement of mine management by enabling quantitative analysis such as visualization of mine shape, distance, area and slope, and automation of drawing creation for cross section shape.