• Title/Summary/Keyword: SOX3

Search Result 266, Processing Time 0.031 seconds

Assessment and Estimation of Particulate Matter Formation Potential and Respiratory Effects from Air Emission Matters in Industrial Sectors and Cities/Regions (국내 산업 및 시도별 대기오염물질 배출량자료를 이용한 미세먼지 형성 가능성 및 인체 호흡기 영향 평가추정)

  • Kim, Junbeum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.220-228
    • /
    • 2017
  • Since the fine particulate matters occurred from mainly combustion in industry and road transport effect to human respiratory health, the interest and importance are getting increased. In 2013, the World Health Organization (WHO) concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component ($PM_{10}$ and $PM_{2.5}$) of air pollution most closely associated with increased cancer incidence, especially cancer of the lung. Therefore, many researches have been studied in the quantification and data development of fine particulate matters. Currently, the Ministry of Environment and cities/regions are developing the fine particulate matter data and air emission information. Particularly just $PM_{10}$ and $PM_{2.5}$ data is used in the fine particulate matters warning and alert. The data of NOx, SOx, $NH_3$, which have the particulate matter formation potential are not well considered. Also, the researches related with particulate matter formation potential and respiratory effects by industrial sectors and cities/regions are not conducted well. Therefore, the purpose of this study is to evaluate and calculate particulate matter formation potential and respiratory effects in 11 industrial sectors and cities using NOx, SOx, $PM_{10}$, $NH_3$ data (developed by Ministry of Environment and National Institute of Environmental Research) in 2001 and 2013. The results of this study will be provided the particulate matter formation potential and respiratory effects and will be used for future the fine particulate matter researches.

A Study on Exhaust Gas Reduction By K-7 Mode of DOC (DOC의 K-7 Mode에 의한 배기가스 저감에 관한 연구)

  • 백두성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.136-142
    • /
    • 2000
  • With the significant growth of the number of vehicles environmental problems is raised. NOx SOx, and PM emissions in diesel powered vehicles are larger than that in gasoline because the development of pollutants reduction techniques has not been yet achieved. So it is need to develop after-tratment or to convert into alternative fuel to satisfy emission regula-tion. Among the after-treatment systems to reduce the diesel emissions studies with diesel oxidation catalyst(DOC) are done greatly. In this study using DOC reduction efficiency with the change of temperature and catalyst loading was calculated through measurements of CO, HC, PM. and SOX.

  • PDF

Co-combustion of RPF in the Coal Power plant (석탄화력발전소에서 폐플라스틱고형연료(RPF)의 혼소 연구)

  • Choi, Yeon-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.609-612
    • /
    • 2007
  • The co-combustion of coal and RPF(Refuse Plastic Fuel) mixture has been experimented in a commercially operating CFB coal boiler and the emissions such as SOx, NOx, TSP and dioxine were measured at the stack. The experimented RPF was supplied by domestic RPF company that is commercially producing RPF pellet from the wasted plastics. Up to 15% of total coal was substituted to RPF and no trouble was happened during normal boiler operation. SOx and NOx concentration was reduced about $15{\sim}20$% and TSP(Total Suspended Particle) was drastically reduced about 30% during co-combustion. Dioxine concentration at mixing ratio of 7.5% was $0.0487ng{\sim}TEQ/Sm^3$ ($O_2$, 12%) that satisfied governmental emission regulation.

  • PDF

Experimental Analysis on the Desulfurizarion and Denitrification Efficiencies in Pulsed Corona Discharge Process (펄스 코로나 방전 공정에서 탈질, 탈황 효율의 실험적 분석)

  • Kim, Sung-Min;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.181-186
    • /
    • 2003
  • In this study, we analyzed $NO_x$ and $SO_x$ removal efficiencies by a pulsed corona discharge process and investigated the effect of several process variables. The removal efficiencies of NO and $SO_2$ were measured changing the process variables of initial concentrations of NO, $H_2O$, and $NH_3$, $SO_2$, applied voltage, pulse frequency and residence time. As the applied voltage or the frequency of applied voltage or the residence time increases, the NO and $SO_2$ removal efficiencies increase. The NO and $SO_2$ removal efficiencies also increase by the addition of $O_2$ or $H_2O$, or by using the large diameter of the discharge electrode. The experimental results can be used as a basis to design the pulsed corona discharge process to remove $NO_x$, $SO_x$ and VOCs.

  • PDF

A Study on Recycling of Waste Tire (폐타이어 재 자원화를 위한 연구)

  • 이석일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.38-44
    • /
    • 2000
  • Compared to other waste, waste tire has much discharge quantity and calorie. When we use waste heat from waste tire, it can be definitely better substitute energy than coal and anthracite in high oil price age. To use as a basic data for providing low cost and highly effective heating system, following conclusion was founded. Annual waste tire production was 19,596 million in 1999, Recycling ratio was almost 55% and more than 8.78 million was stored. Waste tire has lower than 1.5% sulfur contain ratio which is resource of an pollution, So it is a waste fuel which can be combustion based on current exhaust standard value without any extra SOx exclusion materials. Waste tire has 9,256Kcal/kg calorific value and it is higher than waste rubber, waste rubber, waste energy as same as B-C oil. When primary and second air quantity was 1.6, 8.0 Nm$^3$/min, dry gas production time was 270min and total combustion time was 360 min. In the SOx, NOx, HC of air pollution material density were lower than exhaust standard value at the back of cyclone and dusty than exhaust standard value without dust collector.

  • PDF

Photovoltaic Generating System on Ships to Reduce Fossil Fuel Dependence (선박에서 화석연료 의존도 절감을 위한 태양광 발전)

  • Takeshi Katagi;Yoshimi Fujii;Eiichi Nishikawa;Takeshi Hashimoto;Kenji Ishida
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.176-176
    • /
    • 1996
  • The release of polluting gases such as NOx of SOx to the atmosphere from ships is causing increasing concern. To reduce destruction to the marine environment, the value of the utilization of photovoltaic energy is highly appreciated since photovoltaic energy is and alternate clean energy source to fossil fuels. The use of a photovoltaic generating system to supplement diesel engine driven electric power system on ships has been studied. The design of the photovoltaic generating system based on a photovoltaic array is presented in this paper. The amount of NOx and SOx emission is found to be significantly reduced for a small vessel operated within a harbour after a photovoltaic generating system is installed to supplement the diesel engine generator system.

A Study on Application of Desulfurization Technology in Cement Production Process (시멘트 생산 공정 내 탈황기술 적용 가능성 연구)

  • Youmin Lee;Chae-wook Lim;Teawoo Lee;Hyung-Suhk Suh;Jun-Ho Kil
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.3-15
    • /
    • 2024
  • Environmental awareness is rising worldwide. however, cement manufacturing facilities use recycled resources to improve raw material and fuel substitution rates, contributing to environmental issues such as waste disposal. The emission of sulfur oxides (SOx), an air pollutant, has been regulated by limestone as raw material in cement manufacturing. However, the impact of increasing use of recycled resources on future facility processes and environmental changes is unclear. Therefore, the cement manufacturing facilities require desulfurization-related technologies and research. In this study, we investigated the applicability of desulfurization technology to cement manufacturing facilities and demonstrated various approaches to applying this technology using byproducts generated in cement manufacturing.

Analysis of the Emission Benefits of Using Alternative Maritime Power (AMP) for Ships

  • Kim, Kyunghwa;Roh, Gilltae;Chun, Kangwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.381-394
    • /
    • 2019
  • The marine industry contributes a large proportion of the air pollutant emissions along coastal regions, and this air pollution has been strongly linked to cardiovascular diseases and other illnesses. To alleviate the problem, many ports have installed alternative maritime power (AMP) facilities that enable onboard marine auxiliary engines with generators (gensets) to be shut down while a ship is at berth. This study compared the emissions from conventional gensets with those from AMP facilities, focusing on four emission types: greenhouse gases (GHG), sulphur oxides (SOX), nitrogen oxides (NOX), and particulate matter (PM). Both direct (combustion / operation) and indirect (upstream) emissions were considered together for the emission comparison. The results showed that AMP has lower emissions than conventional onboard gensets, and this benefit is highly dependent on the electricity generation mix onshore. On average, GHG emissions could be reduced by about 18.3 %, while the other emissions (SOX, NOX, and PM) would decrease more dramatically (88.4 %, 90.1 %, and 91.5 %, respectively). Additionally, future benefits of the AMP would increase due to the expansion of renewable energies. Thus, this study supports the potential of AMP as a promising solution for environmental concerns at ports worldwide.

A Study on Estimating Air Pullution in the Port of Incheon (인천항의 대기오염물질 배출량 산정 연구)

  • Lee, Jeong-Uk;Lee, Hyang-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.143-157
    • /
    • 2021
  • International organizations such as the World Health Organization, the Organization for Economic Development and Cooperation, and major developed countries recognize the seriousness of air pollution. International organizations such as the International Maritime Organization have also implemented various regulations to reduce air pollution from ships. In line with this international trend, the government has also enacted a special law on improving air quality in port areas, and is making efforts to reduce air pollution caused by ports. The purpose of the Special Act is to implement comprehensive policies to improve air quality in port areas. This study sought to identify the emissions of each source of air pollutants originating from the port and prepare basic data on setting the policy priorities. To this end, the analysis was conducted in six categories: ships, vehicles, loading and unloading equipment, railways, unloading/wild ash dust, road ash dust, and the methodology presented by the European Environment Agency(EEA) and the United States Environmental Protection Agency(EPA). The pollutants subject to analysis were analyzed for carbon monoxide(CO), nitrogen oxides (NOX), sulfur oxides(SOX), total airborne materials(TSP), particulate matter(PM10, PM2.5), and ammonia(NH3). The analysis showed a total of 7,122 tons of emissions. By substance, NOX accounted for the largest portion of 5,084 tons, followed by CO (984 tons), SOX (530 tons), and TSP (335 tons). By source of emissions, ships accounted for the largest portion with 4,107 tons, followed by vehicles with 2,622 tons, showing high emissions. This proved to be the main cause of port air pollution, with 57.6% and 36.8% of total emissions, respectively, suggesting the need for countermeasures against these sources.

A Study on Estimating Ship Emission - Focusing on Gwangyang Port and Ulsan Port (선박에 기인한 대기오염물질 배출량 산정 연구 -광양항과 울산항을 중심으로)

  • Zhao, Ting-Ting;Yun, Kyong-Jun;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • Recently, air pollution from the marine ports has become a serious issue all over the world. Because marine trade accounts for 99.7% of Korea's trade, efforts are required to recognize the level of port pollution and establish environmental policies. This study estimates air pollution emitted during the berthing process in the Gwangyang and Ulsan ports. Data on ship activity and characteristics are collected and reasonable methodologies and factors from EEA and EPA are adopted. The results show that 253.09 tons of CO, 1986.61 tons of NOx, 684.01 tons of SOx, 47.88 tons of $PM_{10}$, and 44.69 tons of $PM_{2.5}$ are emitted at the Gwangyang port. Further, the Ulsan port emitted 212.28 tons of CO, 1712.54 tons of NOx, 573.72 tons of SOx, 40.16 tons of $PM_{10}$, and 37.48 tons of $PM_{2.5}$. A stage-by-stage plan for installing AMP infrastructure is suggested as part of a green port policy. This research provides the current pollution status and contributes guidelines for the direction of future policy.