• Title/Summary/Keyword: SOX-2

Search Result 353, Processing Time 0.025 seconds

Effects of Mito-TEMPO on the survival of vitrified bovine blastocysts in vitro

  • Jeong, Jae-Hoon;Yang, Seul-Gi;Park, Hyo-Jin;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.299-306
    • /
    • 2021
  • Vitrification methods are commonly used for mammalian reproduction through the long-term storage of blastocyst produced in vitro. However, the survival and quality of embryos following vitrification are significantly low compared with blastocyst from in vitro production (IVP). This study evaluates that the survival of frozen-thawed bovine embryos was relevant to mitochondrial superoxide derived mitochondrial activity. Here we present supplementation of the cryopreservation medium with Mito-TEMPO (0.1 µM) induced a significant (p < 0.001; non-treated group: 56.8 ± 8.7%, reexpanded at 24 h vs Mito-TEMPO treated group: 77.5 ± 8.9%, re-expanded at 24 h) improvement in survival rate of cryopreserved-thawed bovine blastocyst. To confirm the quality of vitrified blastocyst after thawing, DNA fragmentation of survived embryos was examined by TUNEL assay. As a result, TUNEL positive cells rates of frozen-thawed embryos were lower in the Mito-TEMPO treated group (4.2 ± 1.4%) than the non-treated group (7.1 ± 3.5%). In addition, we investigated the intracellular ROS and mitochondrial specific superoxide production using DCF-DA and Mito-SOX staining in survived bovine embryos following vitrification depending on Mito-TEMPO treatment. As expected, intracellular ROS levels and superoxide production of vitrified blastocysts after cryopreservation were significantly reduced (p < 0.05) according to Mito-TEMPO supplement in freezing medium. Also, mitochondrial activity measured by MitoTracker Orange staining increased in the frozen-thawed embryos with Mito-TEMPO compared with non-treated group. These results indicate that the treatment of Mito-TEMPO during cryopreservation might induce reduction in DNA fragmentation and apoptosis-related ROS production, consequently increasing mitochondrial activation for developmental capacity of frozen-thawed embryos.

Atorvastatin inhibits the proliferation of MKN45-derived gastric cancer stem cells in a mevalonate pathway-independent manner

  • Choi, Ye Seul;Cho, Hee Jeong;Jung, Hye Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Gastric cancer stem cells (GCSCs) are a major cause of radioresistance and chemoresistance in gastric cancer (GC). Therefore, targeting GCSCs is regarded as a powerful strategy for the effective treatment of GC. Atorvastatin is a widely prescribed cholesterol-lowering drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate-limiting enzyme in the mevalonate pathway. The anticancer activity of atorvastatin, a repurposed drug, is being investigated; however, its therapeutic effect and molecular mechanism of action against GCSCs remain unknown. In this study, we evaluated the anticancer effects of atorvastatin on MKN45-derived GCSCs. Atorvastatin significantly inhibited the proliferative and tumorsphere-forming abilities of MKN45 GCSCs in a mevalonate pathway-independent manner. Atorvastatin induced cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade. Furthermore, atorvastatin exerted an antiproliferative effect against MKN45 GCSCs by inhibiting the expression of cancer stemness markers, such as CD133, CD44, integrin α6, aldehyde dehydrogenase 1A1, Oct4, Sox2, and Nanog, through the downregulation of β-catenin, signal transducer and activator of transcription 3, and protein kinase B activities. Additionally, the combined treatment of atorvastatin and sorafenib, a multi-kinase targeted anticancer drug, synergistically suppressed not only the proliferation and tumorsphere formation of MKN45 GCSCs but also the in vivo tumor growth in a chick chorioallantoic membrane model implanted with MKN45 GCSCs. These findings suggest that atorvastatin can therapeutically eliminate GCSCs.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

Generation of Induced Pluripotent Stem Cells from Lymphoblastoid Cell Lines by Electroporation of Episomal Vectors

  • Myunghyun Kim;Junmyeong Park;Sujin Kim;Dong Wook Han;Borami Shin;Hans Robert Scholer;Johnny Kim;Kee-Pyo Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Background and Objectives: Lymphoblastoid cell lines (LCLs) deposited from disease-affected individuals could be a valuable donor cell source for generating disease-specific induced pluripotent stem cells (iPSCs). However, generation of iPSCs from the LCLs is still challenging, as yet no effective gene delivery strategy has been developed. Methods and Results: Here, we reveal an effective gene delivery method specifically for LCLs. We found that LCLs appear to be refractory toward retroviral and lentiviral transduction. Consequently, lentiviral and retroviral transduction of OCT4, SOX2, KFL4 and c-MYC into LCLs does not elicit iPSC colony formation. Interestingly, however we found that transfection of oriP/EBNA-1-based episomal vectors by electroporation is an efficient gene delivery system into LCLs, enabling iPSC generation from LCLs. These iPSCs expressed pluripotency makers (OCT4, NANOG, SSEA4, SALL4) and could form embryoid bodies. Conclusions: Our data show that electroporation is an effective gene delivery method with which LCLs can be efficiently reprogrammed into iPSCs.

Effect of $SO_2$ on DeNOx by Ammonia in Simultaneous Removal of SOx and NOx over Activated Coke (활성 코우크스상의 동시 탈황탈질에서 암모니아에 의한 탈질에 이산화황이 미치는 영향)

  • Kim, Hark-Joon;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • The $SO_2$ and $NO_x$ removal with an activated coke catalyst was conducted by a two-stage reaction which first $SO_2$ was oxidized to $H_2SO_4$ and then $NO_x$ was reduced to $N_2$. But if unreacted sulfur dioxide entered in the second stage, the $NO_x$ reduction was hindered by the reaction with ammonia. In this study, experimental investigations by using lab-scale column apparatus on the product and the reactivity of $SO_2$ with ammonia over coke catalyst which was activated with sulfuric acid was carried out through ultimate analysis DTA, TGA and SEM of catalyst before and after the reaction. Also, the effect of reaction emperature on the reactivity of $SO_2$ with ammonia was determined by means of breakthrough curves with time. The obtained results from this study were summarized as following; Activated cokes were decreased carbon component and increased oxygen and sulfur components in comparison with original cokes. The products over coke catalyst were faced fine crystal of $(NH_4)_2SO_4$, which results in the pressure loss of reacting system. The order of general reactivity in terms of the reaction temperature after breakthrough for $SO_2$ was found to be $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$. This was related to adsorption amounts of ammonia on the activated cokes.

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.

Evaluation of SO2 Absorption Efficiency for Calcined Oyster Shell Slurry Using a Simulated Spray Type-flue Gas Desulfurization (FGD) System: A Comparative Study with Limestone Slurry (모사 Spray Type 배연탈황설비를 이용한 소성패각 슬러리의 SO2 흡수능 평가: 석회석과의 비교연구)

  • Kim, Seok-Hwi;Hong, Bum-Uh;Lee, Jin-Won;Cha, Wang-Seok;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.119-128
    • /
    • 2019
  • About 300,000 tones of oyster shell are annually produced in Korea and, thus, a massive recycling plan is required. Many desulfurizing studies using oyster shells with chemical composition of $CaCO_3$ have been performed so far; however, most of them have focused on dry desulfurization. This study investigates the possibility of using oyster shells for wet desulfurization after calcination. For this, a simulated wet desulfurization facility of spray type was devised and compared the SOx-stripping characteristics of calcined oyster shell with those of limestone. The calcined oyster shell slurry indicate a better desulfurizability than the slurries of raw shell or limestone because the oyster shell transformed to a more reactive phase ($Ca(OH)_2$) by the calcination and hydration. Because of this reason, when the calcined oyster shell slurries were used, the reaction residue showed the higher gypsum ($CaSO_4{\cdot}2H_2O$) contents than any other cases. In the continuous desulfurization experiments, calcined oyster shell slurry showed a wider pH variation than limestone or raw oyster shell slurries, another clear indication of high reactivity of calcined oyster shells for $SO_2$ absorption. Our study also shows that the efficiency of wet desulfurization can be improved by the use of calcined oyster shells.

Characteristics of Fine Particulate Matter (PM2.5) in the Atmosphere of Saemangum Reclaimed Land Area (새만금간척지 지역 대기 중 초미세먼지 (PM2.5) 오염 특성 평가)

  • Song, Ji-Han;Kim, Jeong-Soo;Hong, Sung-Chang;Kim, Jin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • To understand the distribution characteristics of PM2.5 concentration in the Saemangeum Reclamation Area and nearby areas, three points of the background area, the occurrence area, and the affected area were selected and samples were collected for each season. The chemical composition was determined. As a result of analyzing the chemical composition contained in PM2.5, NO3- (7.2 ㎍/m3), SO42- (4.3 ㎍/m3), NH4+ (4.3 ㎍/m3), OC (2.5 ㎍/m3), Si (1.3 ㎍/m3) m3) and EC (0.5 ㎍/m3) seemed to be the main components, and NO3-, SO42-, NH4+, which are components that form secondary particles, occupied a large proportion. The composition ratio of PM2.5 was investigated in the order of ion component (56.8%) > Unknown (27.4%) > carbon component (11.8%) > heavy metal component (4.0%). During the PM2.5 high concentration case days, the ionic component accounted for 90.7% during atmospheric stagnation cases, whereas the chemical composition ratio was in the order of ionic component (51.7%) > heavy metal component (41.5%) > carbon component (6.8%) during yellow dust cases. It was found that the characteristic of PM2.5 in the Saemangeum reclaimed land and surrounding areas is mainly influenced by outside (domestic and overseas) throughout the year. Ion components accounted for the largest portion of PM2.5 components in this area, but there were few sources of SOx and NOx emission in the Seamangeum area, which are precursors for secondary particle formation. Therefore, it is judged that most of these are generated and influenced as a secondary reaction in the atmosphere from the outside.

Bio-oil production from Chlorella sp. KR-1 using carbon dioxide from bubble column (기포탑에서 이산화탄소를 이용한 Chlorella sp. KR-1로부터 바이오오일 생산)

  • Lee, Ja-Youn;Seo, Kyoung-Ae;Park, Soon-Chul;Lee, Jin-Suk;Oh, You-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.513-513
    • /
    • 2009
  • 최근 바이오디젤의 원료로 미세조류가 많은 관심을 끌고 있다. 미세조류는 물, 이산화탄소와 태양광을 이용해 광합성 성장이 가능하며, 지질(오일) 성분이 풍부하여 바이오디젤의 원료로 이용할 수 있다. 미세조류는 단위 면적당 오일 생산량이 곡물류의 50-100배 이상이며, 이산화탄소를 기질로 이용하므로 온실가스 직접 저감이 가능하다. 또한 배양시 비경작지나 황무지를 사용할 수 있으므로 기존 식용작물과 경쟁하지 않으며, 하수, 해수, 폐수 등 다양한 물자원을 이용할 수 있다. 본 연구에서는 고농도 $CO_2$에 내성을 지닌 Chlorella sp. KR-1을 대상으로 1 L 규모 기포탑 광생물반응기에서 균체 성장 및 지질(바이오오일) 합성에 대한 $CO_2$ 농도, 가스 공급속도, 질산염 농도 등 환경 및 영향 조건의 영향을 조사하였다. 가스 공급속도 0.4 L/min에서 $CO_2$ 농도를 0.03-20% 범위에서 조사하였을 때 최대 균체성장은 $CO_2$ 10%에서 관찰되었다. 균체내 지방산 함량은 $CO_2$ 농도 0.03%에서 가장 낮았고, 5-20% 범위에서는 $CO_2$ 농도 증가에 따라 감소하는 경향이 관찰되었다. 가스 공급속도를 0.2 L/min에서 0.8 L/min으로 증가시켰을 때 최대 균체농도는 0.6-0.8 L/min의 범위에서 관찰되었고, 생체내 최대 지방산 함량은 0.4 L/min에서 관찰되었다. Nitrate 농도 1-20 mM 범위에서 최종 균체농도는 nitrate 농도 증가에 따라 10mM까지 증가하였으나 그 이상에서는 증가하지 않았다. 반면 지방산 함량은 nitrate 농도 증가에 따라 감소하는 경향이 관찰되었다. 본 실험에서 얻은 최대 지방산 생산량은 1,100 mg/L이었으며, 주요 지방산은 C10:0(1.7%), C16:0(28.5%), C18:0(11%), C18:1n9c(25.9%), C18:2n6c(26.3%), C18:3n3(6.6%)이었다. 현재 100 L 규모 광생물반응기에서 석탄발전소 배가스($CO_2$ 12-15%, SOx 50ppm, NOx 100ppm)를 이용한 바이오오일 생산 실험이 진행 중이다.

  • PDF

17β-estradiol mediated effects on pluripotency transcription factors and differentiation capacity in mesenchymal stem cells derived porcine from newborns as steroid hormones non-functional donors

  • Lee, Won-Jae;Park, Ji-Sung;Lee, HyeonJeong;Lee, Seung-Chan;Lee, Jeong-Hyun;Ock, Sun-A;Rho, Gyu-Jin;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.209-220
    • /
    • 2017
  • The estrogen-mediated effect of mesenchymal stem cells (MSCs) is a highly critical factor for the clinical application of MSCs. However, the present study is conducted on MSCs derived from adult donors, which have different physiological status with steroid hormonal changes. Therefore, we explores the important role of $17{\beta}$-estradiol (E2) in MSCs derived from female and male newborn piglets (NF- and NM-pBMSCs), which are non-sexually matured donors with steroid hormones. The results revealed that in vitro treatment of MSCs with E2 improved cell proliferation, but the rates varied according to the gender of the newborn donors. Following in vitro treatment of newborn MSCs with E2, mRNA levels of Oct3/4 and Sox2 increased in both genders of MSCs and they may be correlated with both estrogen receptor ${\alpha}$ ($ER{\alpha}$) and $ER{\beta}$ in NF-pBMSCs, but NM-pBMSCs were only correlated with $ER{\alpha}$. Moreover, E2-treated NF-pBMSCs decreased in ${\beta}$-galactosidase activity but no influence on NM-pBMSCs. In E2-mediated differentiation capacity, E2 induced an increase in the osteogenic and chondrogenic abilities of both pBMSCs, but adipogenic ability may increased only in NF-pBMSCs. These results demonstrate that E2 could affect both genders of newborn donor-derived MSCs, but the regulatory role of E2 varies depending on gender-dependent characteristics even though the original newborn donors had not been affected by functional steroid hormones.