Effect of $SO_2$ on DeNOx by Ammonia in Simultaneous Removal of SOx and NOx over Activated Coke

활성 코우크스상의 동시 탈황탈질에서 암모니아에 의한 탈질에 이산화황이 미치는 영향

  • Kim, Hark-Joon (Department of Energy and Chemical Engineering Kyungnam University) ;
  • Yoon, Cho-Hee (Department of Environmental Engineering, Kyungnam University)
  • Received : 2009.11.11
  • Accepted : 2010.02.16
  • Published : 2010.02.28

Abstract

The $SO_2$ and $NO_x$ removal with an activated coke catalyst was conducted by a two-stage reaction which first $SO_2$ was oxidized to $H_2SO_4$ and then $NO_x$ was reduced to $N_2$. But if unreacted sulfur dioxide entered in the second stage, the $NO_x$ reduction was hindered by the reaction with ammonia. In this study, experimental investigations by using lab-scale column apparatus on the product and the reactivity of $SO_2$ with ammonia over coke catalyst which was activated with sulfuric acid was carried out through ultimate analysis DTA, TGA and SEM of catalyst before and after the reaction. Also, the effect of reaction emperature on the reactivity of $SO_2$ with ammonia was determined by means of breakthrough curves with time. The obtained results from this study were summarized as following; Activated cokes were decreased carbon component and increased oxygen and sulfur components in comparison with original cokes. The products over coke catalyst were faced fine crystal of $(NH_4)_2SO_4$, which results in the pressure loss of reacting system. The order of general reactivity in terms of the reaction temperature after breakthrough for $SO_2$ was found to be $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$. This was related to adsorption amounts of ammonia on the activated cokes.

활성코우크스 촉매상에서 $SO_2$$NO_x$의 제거는 1단계에서 $SO_2$$H_2SO_4$로 산화되고 2단계에서 $NO_x$$N_2$로 환원되는 2단계 반응으로 이루워진다. 2단계 영역에 미반응 $SO_2$가 유입되면 암모니아와로 반응하여 $NO_x$환원이 저하된다. 이러한 문제점을 해결기 위하여 본 연구에서는 황산으로 활성화된 코우크스 촉매상에서 $SO_2$$NH_3$와의 촉매반응에 의하여 생성된 물질의 규명과 반응성을 검토하고자 실험실 규모의 반응관을 이용하여 실험을 수행하고 반응전후 촉매의 원소분석, DTA, TGA, SEM를 조사 분석하였다. 반응온도에 따른 반응성을 검토하기 위해 $SO_2$의 반응속도와 반응속도의 경시변화에 따른 파과곡선 등을 측정하였다. 실험으로부터 얻어진 결과는 다음과 같다; 황산으로 활성화된 코우크스는 탄소성분은 감소하고 산소와 황성분(O+S)은 증가하였다. 활성 코우크스 촉매상에 형성되는 반응생성물은 황산암모늄($(NH_4)_2SO_4$)으로 반응관에 축적되어 압력손실을 일으켰다. 반응온도에 따른 전체적인 반응성의 크기는 $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$의 순서이었다. 이는 활성코우크스에 흡착된 암모니아 흡착량과 상관성을 가지고 있었다.

Keywords

References

  1. Feng, O., Zhu, R-S., Sato, K., Haneda, M. and Hamada, H., "Promotion of surface $SO_x$ on the selective catalytic reduction of NO by hydrocarbons over $Ag/Al_2O_3$", Appl. Surf. Sci., 252, 6390-6393(2006). https://doi.org/10.1016/j.apsusc.2006.01.052
  2. Hong, I., Jiang, H., Park, Y. D., Kim, J. Y. and Ha, B. -H., "Metal dispersed activated carbon fibers and their application for removal of $SO_x$", Chem. Phys. Lett., 366, 572-577 (2002). https://doi.org/10.1016/S0009-2614(02)01631-7
  3. Nishijima, A., Kurita, M., Kiyozumi, Y. and Kobayashi, R., "New type active carbon catalyst for simultaneous removal of $SO_x$ and $NO_x$", Bull. Chem. Soc. Jpn., 53(11), 3356-3360(1980). https://doi.org/10.1246/bcsj.53.3356
  4. Nimmo, W., Patsias,A. A., Hampartsoumian, E., Gibbs, B. M. and Williams, P. T.", Simultaneous reduction of $NO_x$ and $SO_x$ emissions from coal combustion by calcium magensium acetate", Fuel, 83, 149-155(2004). https://doi.org/10.1016/S0016-2361(03)00257-6
  5. Centi, G. and Perathoner, S.," Performances of $SO_x$ traps derived from Cu/Al hydrotalcite for the protection of $NO_x$ traps from the deactivation by sulfur", Appl. Catal., 70, 172-178 (2007). https://doi.org/10.1016/j.apcatb.2005.12.034
  6. Muniz, J., Marban, G. and Fuertes, A. B., "Low temperature selective catalytic reduction of NO over modified activated carbon fibers", Appl. Catal. B: Environ., 27, 27-36 (2000). https://doi.org/10.1016/S0926-3373(00)00134-X
  7. Li, K., Ling, L., Lu, C. and Qiao, W"., Catalytic removal of $SO_2$ over ammonia-activated carbon fiber", Carbon., 39, 1803-1808 (2001). https://doi.org/10.1016/S0008-6223(00)00320-1
  8. Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, Y. and Yasutake, A., "Removal of $SO_x$ and $NO_x$ over activated carbon fibers", Carbon., 38, 227-239(2000). https://doi.org/10.1016/S0008-6223(99)00179-7
  9. Li, J., Kobayashi, N. and Hu, Y.," The activated coke preperation for $SO_x$ adsorption by using flue gas from coal power plant", Chem. Eng. Proc., 47, 118-127(2008). https://doi.org/10.1016/j.cep.2007.08.001
  10. Lui, Q., Li, C. and Li, Y., "$SO_2$ removal from flue gas by activated semi-cokes the temperature of catalysts and determination of operating conditions", Carbon., 41, 2217-2223 (2003). https://doi.org/10.1016/S0008-6223(03)00205-7
  11. Lu, L., Guo, J., Jin, F. and Zeng, H.," Removal of $SO_2$ from $O_{2^{-}}$containing flue gas by ACF impregnated with $NH_3$", Chemosphere, 62, 823-826(2006). https://doi.org/10.1016/j.chemosphere.2005.04.070
  12. Olson, G. D., Tsuji, K. and Shirashi, I., "The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process", Fuel Proc. Technol., 65/66, 393-405(2000). https://doi.org/10.1016/S0378-3820(99)00106-X
  13. Tsuji K. and Shiraishi,I.," Combined desurfurization, denitrification and reduction of air toxics using activated coke", Fuel, 76(2), 549-560(1997). https://doi.org/10.1016/S0016-2361(97)00010-0
  14. Kasakabe, K., Kashima, M., Morooka, S. and Kato, Y.," Rate of nitric oxide with ammonia on coke catalysts activated with sulfuric acid", Fuel, 67(5), 714-718(1988). https://doi.org/10.1016/0016-2361(88)90304-3
  15. Yamamoto. K., Seki, M. and Kawazoe, K., "Rate of oxidation of sulfur dioxide on activated carbon surfaces", Bull. Chem. Soc. Jpn.,1046-1052(1972).
  16. Yamamoto. K., Seki, M. and Kawazoe, K., "Effect of sulfuric acid accumulation on the rate of sulfur dioxide oxidation on activated carbon surface", Bull. Chem. Soc. Jpn.,1268-1279 (1973).
  17. 山本協子, 關道治, "活性炭に對する排中亞硫酸ガスの吸着 狀態", 工業化學雜誌", 74(8), 78-83(1971).
  18. DiPanfilo, R. and Egiebor, N. O., "Activated carbon production from synthetic crude coke", Fuel Proc. Technol., 46, 157-169(1996). https://doi.org/10.1016/0378-3820(95)00054-2
  19. Lizzio, A. A. and Debarr, J.", Mechanism of $SO_2$ removal by carbon", Energy Fuel, 11, 284-291(1997). https://doi.org/10.1021/ef960197+
  20. Wang, Y., Liu, Z, Zhan, L., Huang, Z., Liu, Q. and Ma, J., "Performance of an activated carbon honeycomb supported $V_2O_5$ catalyst in simultaneous $SO_2$ and NO removal,"Chem. Eng. Sci., 59, 5283-5290(2004) https://doi.org/10.1016/j.ces.2004.09.030
  21. Le, L. M. and Bandosz.," The role of water surface acidity on the reactive adsorption of ammonia on modified activated carbons", Carbon, 45, 568-578(2007). https://doi.org/10.1016/j.carbon.2006.10.016
  22. Shawwa, A. R., Smith, W. D. and Sego, C. D., "Color and chlorinated organics removal from pulp mill wastewater using acitvated petroleum coke", Water Res., 35(3),745-749(2001). https://doi.org/10.1016/S0043-1354(00)00322-5
  23. Ertl, G., Knozinger, H., Weitkamp, J., Environmental catalysis, 1st ed., Wiley-VCH, Weinheim, pp 142-148(1999).
  24. Guar, V., Asthana, R. and Verma, N., "Removal of $SO_2$ by activated carbon fibers in the presence of $O_2$ and $H_2O$", Carbon, 44, 46-60(2006). https://doi.org/10.1016/j.carbon.2005.07.012
  25. Wang, L., Li, C., Yin, H., Feng, L.,, Yu, Y. and Hou, Y.," Sulfur removal of FCC gasoline by selective adsorption over activated semi-coke", Chem. Technol. fuels oils, 45(2),85-91(2009). https://doi.org/10.1007/s10553-009-0106-x
  26. Kiyoura, R. and Urano, K., "Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate", Ind. Eng. Chem. Process Des. Develop., 9(4), 489-494(1990).
  27. Kasaoka, S., Hara,Y. and Sakaoka, E., "Adsorption of mixtures of nitrogen oxide and sulfur oxide on activated carbon", Bull. Chem. Soc. Jpn., 11, 1737-1742(1977).
  28. Humeres, E., Moreira, R. F. P. M. and Peruch, M.," Reduction of $SO_2$ on different carbons", Carbon, 40, 751-760(2002). https://doi.org/10.1016/S0008-6223(01)00193-2