DOI QR코드

DOI QR Code

17β-estradiol mediated effects on pluripotency transcription factors and differentiation capacity in mesenchymal stem cells derived porcine from newborns as steroid hormones non-functional donors

  • Lee, Won-Jae (College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Ji-Sung (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, HyeonJeong (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Seung-Chan (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Jeong-Hyun (College of Veterinary Medicine, Gyeongsang National University) ;
  • Ock, Sun-A (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Rho, Gyu-Jin (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Sung-Lim (College of Veterinary Medicine, Gyeongsang National University)
  • 투고 : 2017.08.04
  • 심사 : 2017.09.17
  • 발행 : 2017.09.30

초록

The estrogen-mediated effect of mesenchymal stem cells (MSCs) is a highly critical factor for the clinical application of MSCs. However, the present study is conducted on MSCs derived from adult donors, which have different physiological status with steroid hormonal changes. Therefore, we explores the important role of $17{\beta}$-estradiol (E2) in MSCs derived from female and male newborn piglets (NF- and NM-pBMSCs), which are non-sexually matured donors with steroid hormones. The results revealed that in vitro treatment of MSCs with E2 improved cell proliferation, but the rates varied according to the gender of the newborn donors. Following in vitro treatment of newborn MSCs with E2, mRNA levels of Oct3/4 and Sox2 increased in both genders of MSCs and they may be correlated with both estrogen receptor ${\alpha}$ ($ER{\alpha}$) and $ER{\beta}$ in NF-pBMSCs, but NM-pBMSCs were only correlated with $ER{\alpha}$. Moreover, E2-treated NF-pBMSCs decreased in ${\beta}$-galactosidase activity but no influence on NM-pBMSCs. In E2-mediated differentiation capacity, E2 induced an increase in the osteogenic and chondrogenic abilities of both pBMSCs, but adipogenic ability may increased only in NF-pBMSCs. These results demonstrate that E2 could affect both genders of newborn donor-derived MSCs, but the regulatory role of E2 varies depending on gender-dependent characteristics even though the original newborn donors had not been affected by functional steroid hormones.

키워드

참고문헌

  1. Ab-Rahim S, Selvaratnam L and Kamarul T. 2008. The effect of $TGF{\beta}-1$ and ${\beta}$-estradiol on glycosaminoglycan and type II collagen distribution in articular chondrocyte cultures. Cell Biol. Int. 32:841-847. https://doi.org/10.1016/j.cellbi.2008.03.016
  2. Aksu AE, Rubin JP, Dudas JR and Marra KG. 2008. Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann. Plast. Surg. 60:306-322. https://doi.org/10.1097/SAP.0b013e3180621ff0
  3. Balasch J. 2003. Sex steroids and bone: current perspectives. Hum. Reprod. Update 9:207-222. https://doi.org/10.1093/humupd/dmg017
  4. Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA and Young NS. 2009. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114:2236-2243. https://doi.org/10.1182/blood-2008-09-178871
  5. Claassen H, Schluter M, Schunke M and Kurz B. 2006. Influence of $17{\beta}$-estradiol and insulin on type II collagen and protein synthesis of articular chondrocytes. Bone 39:310-317. https://doi.org/10.1016/j.bone.2006.02.067
  6. Chen HY, Zhang X, Chen SF, Zhang YX, Liu YH, Ma LL and Wang LX. 2012. The protective effect of $17{\beta}$-estradiol against hydrogen peroxide-induced apoptosis on mesenchymal stem cell. Biomed. Pharmacother. 66:57-63. https://doi.org/10.1016/j.biopha.2011.11.014
  7. Cooper DK, Gollackner B and Sachs DH. 2002. Will the pig solve the transplantation backlog? Annu. Rev. Med. 53:133-147. https://doi.org/10.1146/annurev.med.53.082901.103900
  8. Corsi KA, Pollett JB, Phillippi JA, Usas A, Li G and Huard J. 2007. Osteogenic potential of postnatal skeletal muscle-derived stem cells is influenced by donor sex. J. Bone Miner. Res. 22:1592-1602. https://doi.org/10.1359/jbmr.070702
  9. Crisostomo PR, Markel TA, Wang M, Lahm T, Lillemoe KD and Meldrum DR. 2007. In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 142:215-221. https://doi.org/10.1016/j.surg.2007.04.013
  10. Dang Z and Lowik CW. 2004. The balance between concurrent activation of ERs and PPARs determines daidzein-induced osteogenesis and adipogenesis. J. Bone Miner. Res. 19:853-861. https://doi.org/10.1359/jbmr.040120
  11. Deasy BM, Lu A, Tebbets JC, Feduska JM, Schugar RC, Pollett JB, Sun B, Urish KL, Gharaibeh BM, Cao B, Rubin RT and Huard J. 2007. A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency. J. Cell Biol. 177:73-86. https://doi.org/10.1083/jcb.200612094
  12. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M and Campisi P. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92:9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  13. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC and Riggs BL. 1988. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84-86. https://doi.org/10.1126/science.3388021
  14. Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, Wang L, Fan J, Zhang HY, Han YH, Li XJ, Shi J, Liu J, Yang L and Luo ZJ. 2014. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One 9:e99137. https://doi.org/10.1371/journal.pone.0099137
  15. Guo M and Hay BA. 1999. Cell proliferation and apoptosis. Curr. Opin. Cell Biol. 11:745-752. https://doi.org/10.1016/S0955-0674(99)00046-0
  16. Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, Hunziker W, Weber P, Martin I and Bendik I. 2004. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 145:848-859. https://doi.org/10.1210/en.2003-1014
  17. Hong L, Colpan A and Peptan IA. 2006. Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng. 12:2747-2753. https://doi.org/10.1089/ten.2006.12.2747
  18. Hong L, Sultana H, Paulius K and Zhang G. 2009. Steroid regulation of proliferation and osteogenic differentiation of bone marrow stromal cells: a gender difference. J. Steroid Biochem. Mol. Biol. 114:180-185. https://doi.org/10.1016/j.jsbmb.2009.02.001
  19. Hong L, Zhang G, Sultana H, Yu Y and Wei Z. 2011. The effects of 17-${\beta}$ estradiol on enhancing proliferation of human bone marrow mesenchymal stromal cells in vitro. Stem Cells Dev. 20:925-931. https://doi.org/10.1089/scd.2010.0125
  20. Itahana K, Campisi J and Dimri GP. 2004. Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1-10. https://doi.org/10.1023/B:BGEN.0000017682.96395.10
  21. Jenei-Lanzl Z, Straub RH, Dienstknecht T, Huber M, Hager M, Grassel S, Kujat R, Angele MK, Nerlich M and Angele P. 2010. Estradiol inhibits chondrogenic differentiation of mesenchymal stem cells via nonclassic signaling. Arthritis. Rheum. 62:1088-1096. https://doi.org/10.1002/art.27328
  22. Jenei-Lanzl Z, Straub RH, Dienstknecht T, Huber M, Hager M, Grassel S, Kujat R, Angele MK, Nerlich M and Angele P. 2012. The effect of estrogen on bone marrow-derived rat mesenchymal stem cell maintenance: inhibiting apoptosis through the expression of Bcl-xL and Bcl-2. Stem Cell Rev. 8:393-401. https://doi.org/10.1007/s12015-011-9292-0
  23. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P and McGonagle D. 2002. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 46:3349-3360. https://doi.org/10.1002/art.10696
  24. Lee WJ, Hah YS, Ock SA, Lee JH, Jeon RH, Park JS, Lee SI, Rho NY, Rho GJ and Lee SL. 2015. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs. Exp. Cell Res. 333:273-288. https://doi.org/10.1016/j.yexcr.2015.03.015
  25. Lee WJ, Lee SC, Lee JH, Rho GJ and Lee SL. 2016. Differential regulation of senescence and in vitro differentiation by 17${\beta}$-estradiol between mesenchymal stem cells derived from male and female mini-pigs. J. Vet. Sci. 17:159-170. https://doi.org/10.4142/jvs.2016.17.2.159
  26. Oreffo RO, Kusec V, Romberg S and Triffitt JT. 1995. Human bone marrow osteoprogenitors express estrogen receptor-alpha and bone morphogenetic proteins 2 and 4 mRNA during osteoblastic differentiation. J. Cell Biochem. 75:382-392.
  27. Parker D, Hwa SY, Sambrook P and Ghosh P. 2003. Estrogen replacement therapy mitigates the loss of joint cartilage proteoglycans and bone mineral density induced by ovariectomy and osteoarthritis. APLAR Int. J. Rheum. Dis. 6:116-127. https://doi.org/10.1046/j.0219-0494.2003.00035.x
  28. Patil R, Kumar BM, Lee WJ, Jeon RH, Jang SJ, Lee YM, Park BW, Byun JH, Ahn CS, Kim JW and Rho GJ. 2014. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp. Cell. Res. 320:92-107. https://doi.org/10.1016/j.yexcr.2013.10.005
  29. Qiu X, Jin X, Shao Z and Zhao X. 2014. $17{\beta}$-estradiol induces the proliferation of hematopoietic stem cells by promoting the osteogenic differentiation of mesenchymal stem cells. Tohoku J. Exp. Med. 233:141-148. https://doi.org/10.1620/tjem.233.141
  30. Qu Q, Perala-Heape M, Kapanen A, Dahllund J, Salo J, Vaananen HK and Harkonen P. 1998. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 22:201-209. https://doi.org/10.1016/S8756-3282(97)00276-7
  31. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG and Prockop DJ. 2002. Expansion of human adult stemcells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530-541. https://doi.org/10.1634/stemcells.20-6-530
  32. Shukla D, Box GN, Edwards RA and Tyson DR. 2008. Bone marrow stem cells for urologic tissue engineering. World J. Urol. 26:341-349. https://doi.org/10.1007/s00345-008-0311-y
  33. Stolzing A and Scutt A. 2006. Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5:213-224. https://doi.org/10.1111/j.1474-9726.2006.00213.x
  34. Syed F and Khosla S. 2005. Mechanisms of sex steroid effects on bone. Biochem. Biophys. Res. Commun. 328:688-696. https://doi.org/10.1016/j.bbrc.2004.11.097
  35. Tozum TF, Oppenlander ME, Koh-Paige AJ, Robins DM and McCauley LK. 2004. Effects of sex steroid receptor specificity in the regulation of skeletal metabolism. Calcif. Tissue Int. 75:60-70. https://doi.org/10.1007/s00223-004-0119-8
  36. Verhaar HJ, Damen CA, Duursma SA and Scheven BA. 1994. A comparison of the action of progestins and the action of progestins and estrogen on the growth and differentiation of normal adult human osteoblast-like cells in vitro. Bone 15:307-311. https://doi.org/10.1016/8756-3282(94)90293-3
  37. Wluka AE, Davis SR, Bailey M, Stuckey SL and Cicuttini FM. 2001. Users of oestrogen replacement therapy have more knee cartilage than non-users. Ann. Rheum. Dis. 60:332-336. https://doi.org/10.1136/ard.60.4.332
  38. Yeh JK, Evans JF, Chen MM and Aloia JF. 1999. Effect of hypophysectomy on the proliferation and differentiation of rat bone marrow stromal cells. Am. J. Physiol. 276:E34-E42.