QRS 영역 중 R파는 ECG 신호 중 가장 큰 대표 신호라 할 수 있으며, 이 점을 기준으로 다양한 특징점을 검출하기 때문에 R파의 검출성능을 높이기 위해 많은 노력을 기울여 왔다. 하지만 R파 검출은 여러 종류의 잡음성분들로 인하여 이를 분석하는데 어려움을 준다. 또한 QRS 영역의 진폭과 유사한 T파나 P파를 R파로 오인함으로써 검출의 어려움이 발생한다. ECG 신호처리는 하드웨어 및 소프트웨어 자원에 대한 효율성을 고려해야 하며, 소형화 및 저 전력을 위해 단순해야 한다. 즉, 최소한의 연산량으로 정확한 R파를 검출함으로써 다양한 부정맥을 분류할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 차감 동작 기법(Subtractive Operation Method, 이하 SOM) 기반의 심전도 신호의 R파 검출 방법을 제안한다. 이를 위해 형태 연산을 통한 전처리 과정과 경험적 문턱값과 차감신호를 통해 R파를 검출하였으며, 검출의 효율성을 위하여 RR 간격을 이용한 동적 역탐색 기법을 적용하였다. 제안한 알고리즘의 R파 검출 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, R파는 평균 99.41%의 검출결과가 나타났다.
특정분야의 기술에 대한 중요도를 평가할 경우 일반적으로 해당 분야 기술의 전문가들의 의견을 델파이 방법을 이용하여 수렴하고 AHP 분석을 통해 기술의 우선순위를 결정하곤 한다. 그러나 전문가들의 직관적 판단에 의존하는 델파이 기법과 AHP 분석은 전문가 집단을 어떻게 선정하느냐에 따라 다른 결과를 초래하거나 항상 최적의 대안을 제시한다는 보장을 하지 못하므로 이에 대한 보완이 필요하다. 본 연구는 해당 기술 분야의 객관적인 자료인 특허 문서를 분석하여 델파이를 통해 도출된 전문가들의 기술 평가 결과의 타당성을 확인하도록 특허맵 분석을 활용할 것과 많은 대상 기술과 다양한 기술 평가 기준을 한꺼번에 고려하여 기술간 우선순위, 기술간 유사성, 기술군간 관련성을 쉽게 확인할 수 있는 SOM 신경망 분석을 활용할 것을 제안한다.
유전자 발현 데이터의 분석 기법 중 무감독 학습 기반의 클러스터링 기법은 생물학적 변화와 진의 발현 정도를 이해하는데 자주 사용되는 방법이다. 생명공학 연구에 있어서 그래프 기반의 MCL 알고리즘은 그래프 내의 노드들을 클러스터링 하는 알고리즘으로 빠르고 효과적이다. 우리는 기존의 MCL 알고리즘을 개선하여 마이크로어레이 데이터에 적용시켰다. MCL 알고리즘 수행 시 inflation과 대각선 항의 두 요인을 조정하는 시뮬레이션을 실행하였으며, 마코브 행렬을 이용하여 변환하였다. 또한 개선된 MCL 알고리즘에서는 더 명확한 클래스를 구분하기 위하여 각 열의 평균을 구한 후 그 값을 임계치로 사용하였다. 따라서 수정된 알고리즘은 기존의 알고리즘들보다 정확도를 높일 수 있었다. 즉, 실제 실험 결과 기존에 알려진 클래스와 비교했을 때 평균 70%의 정확도를 보였다. 또한, 다른 클러스터링 기법, K-means 알고리즘, 계층적 클러스터링 그리고 SOM 알고리즘을 비교 분석하였으며, 그 결과 MCL 알고리즘이 다른 클러스터링 기법보다 더 좋은 결과를 보임을 알 수 있다.
화석 연료의 무분별한 사용으로 환경이 심각하게 오염되고, 화석 연료의 고갈에 대한 문제가 대두됨에 따라서 화석 연료에 대한 문제를 해결 할 수 있는 대체 에너지원에 대해 관심이 집중되기 시작하였다. 현재 신재생 에너지 중에서 가장 각광을 받고 있는 에너지는 중에 하나가 풍력에너지이다. 풍력에너지 발전단지와 기존의 전력 발전소는 소비되는 전력에 대한 생산의 균형을 맞춰야하며, 풍력에너지단지에서 균형적인 생산을 하기 위해서는 풍력에너지에 대한 분석 및 예측이 필요하다. 이를 위해서 데이터마이닝 분야의 예측 기법이 활용 될 수 있다. 본 논문에서는 풍력 데이터를 이용하여 발전 패턴을 예측하기 위해 SOM(Self-Organizing Feature Map) Clustering 기법과 의사결정나무(decision tree)를 이용한 연구를 진행하였다. 즉, 1) 풍력 데이터의 누락된 데이터와 이상치 데이터를 처리하기 위하여, 전처리 과정을 수행하였고, 이 과정에서 특징 벡터를 추출하였다. 2) 전처리 단계를 거쳐 정제되고 정규화된 데이터 집합을 MIA(Mean Index Adequacy) 척도와 SOM Clustering 기법에 적용하여 대표 발전 패턴을 찾아내고 각각의 데이터에 해당하는 대표 패턴을 클래스 레이블로 할당하도록 하였다. 3) 의사결정나무 기반의 분류 기법에 데이터 집합을 적용시켜 새로운 풍력에너지에 대한 분석 및 예측 모델을 생성하였다. 실험 결과, 의사결정나무를 통한 풍력에너지 발전 패턴을 예측하기 위한 모델을 구축하였다.
네트워크 기반의 공격은 그 위험성과 피해의 규모가 크기 때문에 공격 초기에 빨리 탐지하는 것이 중요하다. 그러나 지도학습 데이터 마이닝을 이용한 네트워크상의 비정상 트래픽을 탐지하는 방법은 방대한 양의 데이터 전처리와 관리자의 분석이 요구되며 관리자의 분석이 정확하다는 보장이 없을 뿐만 아니라 각 네트워크의 실시간 특성을 고려하지 못하기 때문에 탐지의 어려움이 크다. 본 논문에서는 실시간 침입 탐지와 점진적 학습을 위해 비지도학습의 데이터마이닝 기법중 하나인 자기 조직화 지도를 기반으로 트래픽 속성 상관관계 메커니즘을 제안한다. 이는 세 단계로 이루어진다. 첫 번째 단계는 초기 학습이 이루어지는 단계로 비지도 학습을 통하여 성격이 비슷한 트래픽끼리 클러스터링 한 맵을 생성시킨다. 두 번째 단계는 맵의 각 클러스터가 정상과 비정상 트래픽의 클러스터로 구분되기 위해 각 공격별로 추출된 규칙(rule)을 적용하여 맵을 분석한다. 이 규칙은 지도 학습을 통한 규칙 기반의 방법으로, 각 데이터 항목마다 SOM을 이용한 속성별 맵의 상관관계(correlation) 분석을 통해 생성되었다. 마지막으로 분석된 맵을 이용하여 실시간 탐지와 함께 점진적 학습이 이루어지게 된다. 여러 실험을 통하여 비지도 학습과 지도 학습을 결합한 SOM 기반 트래픽 속성 상관관계 메커니즘이 지도 학습에 비해 실시간 탐지에 우수함을 증명하였다.
본 논문에서는 계산 효율적이고 노이즈에 강건한 비디오 객체 분할 알고리즘을 제안한다. 움직임 분할과 색 분할을 효율적으로 결합한 시공간 분할 방법의 구현을 위해 SOM 기반의 계층적 군집 방법을 도입하여 특징 벡터들의 군집 관점에서 분할 과정을 해석함으로써 기존의 객체 분할 방법에서 정확한 분할 결과를 얻기 위해서 요구되어지는 많은 연산량과 노이즈에 의한 시스템의 성능 저하 문제를 최소화한다. 움직임 분할 과정에서는 움직임 추정 에러에 의한 영향을 최소화하기 위해서 MRF 기반의 MAP 추정 방법을 이용하여 계산한 움직임 벡터의 신뢰도를 이용한다. 또한 움직임 분할의 성능 향상을 위해서 움직임 신뢰도 히스토그램을 이용한 노이즈 제거 과정을 거칠 뿐만 아니라 자동으로 장면 내에 존재하는 객체의 수를 구하기 위해서 군집 유효성 지표를 이용한다. 객체 추적의 성능 향상을 위해 교차 투영 기법을 이용하며, 분할 결과의 시간적 일관성 유지를 위해 동적 메모리를 이용한다. 다양한 특성을 가지는 비디오 시퀀스들을 이용한 실험을 통해 제안하는 방법이 계산 효율적이고 노이즈에 강건하게 비디오 객체 분할을 수행함은 물론 기존의 구현 방법에 비해 정확한 분할 결과를 얻을 수 있음을 확인하였다.
유비쿼터스 컴퓨팅이 생활의 일부가 되어가면서 정보의 양도 급속도로 늘어나고 있으며, 이로 인해 많은 데이터 속에서 정보를 찾아내는 기술이 부각되고 있다. 고객 기반의 협력적 필터링을 이용한 고객 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 속성을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하고 있다. 그리고 비슷한 선호도를 가진 일부 아이템의 정보를 바탕으로 하기 때문에 아이템의 속성은 무시하는 경향이 있다. 본 논문에서는 전자상거래 추천에서 구매 패턴 예측을 위한 고객 특성기반 SOM 학습을 이용한 군집 방법을 제안한다. 제안 방법은 고객의 속성 정보 기반의 유사한 속성의 데이터끼리의 클러스터링을 통해 보다 빠른 시간 내에 고객 성향에 맞는 추천이 가능한 구매 패턴의 추출이 가능하다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.
본 논문에서는 최신의 공격 유형을 잘 분류해 내고, 기존 공격의 변형이나 새로운 공격에도 탐지 가능하도록 데이터 마이닝 기법을 이용한 공격 탐지 모델 생성 방법들을 소개하고, 다양한 실험을 통해 탐지율 및 탐지 시간 측면에서 이 모델들의 성능을 비교한다. 이러한 탐지 모델을 생성하는데 중요한 요소로 데이터, 속성, 탐지 알고리즘을 꼽을 수 있는데, 실제 네트워크에서 수집된 NetFlow 데이터와 대량의 KDD Cup 1999 데이터를 사용하였다. 또한 탐지 알고리즘으로서 단일 지도/비지도학습 데이터 마이닝 기법 및 결합된 방법을 이용하여 탐지 모델을 생성, 비교 실험하였다. 시험 결과, 결합된 지도학습 알고리즘을 사용한 경우 모델링 시간은 길었지만 가장 탐지율이 높았고, 모든 경우 탐지 시간이 1초 내외로 실시간 탐지 가능성을 입증할 수 있었다. 또한 새로운 공격에 대한 이상탐지 결과로도 92$\%$ 이상의 탐지율을 보임으로 탐지 가능성을 입증할 수 있었고, SOM 기법을 사용하는 경우에는 새로운 공격이 기존 어느 공격에 유사한 특성을 갖는지에 대한 부과적인 정보도 제공하였다.
기존에는 전동기 제어기법으로 PI제어기가 주로 사용되어 왔다. 그러나 실제 시스템의 경우 외란과 센서 잡음에 노출되기 쉽고, 모델의 불확실성에 대한 오차가 발생하기 때문에 보다 강인한 제어기법이 필요한 시점이다. $H{\infty}$제어기법은 명령 추종 성능, 시스템 모델 오차와 외란, 센서 잡음에 대해 강인성을 보장하는 고급제어기법으로서 현재 그 성능을 입증 받아 산업분야에서 다양하게 적용되고 있다. 본 논문은 매입형 영구자석 동기전동기(IPMSM)의 속도제어기에 $H{\infty}$제어기와 PI제어기를 적용하여 모의실험을 통한 성능비교를 통해 모델오차와 같은 시스템의 불확실성과 외란에 대해 $H{\infty}$제어기의 강인한 제어성능을 검증하였다.
일반적으로 변압기의 고장진단을 위해 IEC 코드법이 사용되지만, 이 방법은 가스비율이 규정된 범위 내에 존재하지 않거나 경계조건에 있는 경우 숙련된 진단 전문가에게 의뢰하지 않고는 정확한 고장의 원인을 판정하는데 어려움이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 SOM을 이용한 전력용 변압기의 고장진단 알고리즘을 제안한다. 제안된 방법은 훈련 데이터의 경쟁학습을 통하여 자기 구성 맵을 구축한 후, 실증 데이터를 구축된 맵에 적용하여 고장의 진단이 이루어진다. 또한 클러스터링 기법에 의해 구축된 정상/고장모델과 정상 데이터를 비교함으로써 고장의 추이 및 열화정도를 분석한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해 향상된 진단결과를 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.