• Title/Summary/Keyword: SOM(Self Organization Map)

Search Result 19, Processing Time 0.029 seconds

Areal Image Clustering using SOM with 2 Phase Learning (SOM의 2단계학습을 이용한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.995-998
    • /
    • 2013
  • Aerial imaging is one of the most common and versatile ways of obtaining information from the Earth surface. In this paper, we present an approach by SOM(Self Organization Map) algorithm with 2 phase learning to be applied successfully to aerial images clustering due to its signal-to-noise independency. A comparison with other classical method, such as K-means and traditional SOM, of real-world areal image clustering demonstrates the efficacy of our approach.

  • PDF

Case-Based Reasoning Using Self-Organization Map (자기조직화지도를 이용한 사례기반추론)

  • Kim, Yong-Su;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.382.1-382
    • /
    • 2002
  • This paper presents a new approach integrated Case-Based Reasoning with Self- Organization Map(SOM) in diagnosis systems. The causes of faults are obtained by case-base trained from SOM. When the vibration problem of rotating machinery occurs, this provides an exact diagnosis method that shows the fault cause of vibration problem. In order to verify the performance of algorithm, we applied it to diagnose the fault cause of the electric motor.

  • PDF

Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique (SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.43-54
    • /
    • 2005
  • This paper proposes a novel texture segmentation method using Bayesian image segmentation method and SOM(Self Organization feature Map). Multi-scale wavelet coefficients are used as the input of SOM, and likelihood and a posterior probability for observations are obtained from trained SOMs. Texture segmentation is performed by a posterior probability from trained SOMs and MAP(Maximum A Posterior) classification. And the result of texture segmentation is improved by context information. This proposed segmentation method shows better performance than segmentation method by HMT(Hidden Markov Tree) model. The texture segmentation results by SOM and multi-sclae Bayesian image segmentation technique called HMTseg also show better performance than by HMT and HMTseg.

Case-Based Reasoning Using Self-Organization Map Neural Network (자기조직화지도 신경망을 이용한 사례기반추론)

  • Kim, Yong-Su;Yang, Bo-Suk;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.832-835
    • /
    • 2002
  • This paper presents a new approach integrated Case-Based Reasoning with Self. Organization Map(SOM) in diagnosis systems. The causes of faults are obtained by case-base trained from SOM. When the vibration problem of rotating machinery occurs, this provides an exact diagnosis method that shows the fault cause of vibration problem. In order to verify the performance of algorithm, we applied it to diagnose the fault cause of the electric motor.

  • PDF

Collision-Free Path Planning for Robot Manipulator using SOM (SOM(Self-Organization Map)을 이용한 로보트 매니퓰레이터 충돌회피 경로계획)

  • Rhee, Jong-Woo;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.499-515
    • /
    • 1996
  • The basic function of on industrial robot system is to move objects in the workspace fast and accurately. One difficulty in performing this function is that the path of robot should be programmed to avoid the collision with obstacles, that is, tools, or facilities. This path planning requires much off-line programming time. In this study, a SOM technique to find the collision-free path of robot in real time is developed. That is, the collision-free map is obtained through SOM learning and a collision-free path is found using the map in real time during the robot operation. A learning procedure to obtain the map and an algorithm to find a short path using the map is developed and simulated. Finally, a path smoothing method to stabilize the motion of robot is suggested.

  • PDF

Analysis of Risk Factors for the Importance in Vietnam's Public-Private Partnership Project Using SOM(Self-organizing map) (SOM(Self-organizing map)을 활용한 베트남 민관협력사업 리스크 요인 중요도 분석)

  • Yun, Geehyei;Kim, Seungho;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • The economic growth rate and the urban population of the Vietnam are steadily increasing. As a result, the size of the Vietnam's construction market for infrastructure development is expected to increase. However, Vietnam is adopting PPP(Public-Private Partnership) to solve this problem because the government lacks the financial and administrative capacity for infrastructure development. PPP is a business that lasts more than 10 years, so risk management is very important because it can be a long term damage in case of business failure. This study proposes a self-organization map (SOM) for analyzing the impact of risk factors and determining the priority of them. SOM is a visualization analysis method that analyzes the inherent correlation through the color pattern of each factor.

Development of Data Mining System for Ship Design using Combined Genetic Programming with Self Organizing Map (유전적 프로그래밍과 SOM을 결합한 개선된 선박 설계용 데이터 마이닝 시스템 개발)

  • Lee, Kyung-Ho;Park, Jong-Hoon;Han, Young-Soo;Choi, Si-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.382-389
    • /
    • 2009
  • Recently, knowledge management has been required in companies as a tool of competitiveness. Companies have constructed Enterprise Resource Planning(ERP) system in order to manage huge knowledge. But, it is not easy to formalize knowledge in organization. We focused on data mining system by genetic programming(GP). Data mining system by genetic programming can be useful tools to derive and extract the necessary information and knowledge from the huge accumulated data. However when we don't have enough amounts of data to perform the learning process of genetic programming, we have to reduce input parameter(s) or increase number of learning or training data. In this study, an enhanced data mining method combining Genetic Programming with Self organizing map, that reduces the number of input parameters, is suggested. Experiment results through a prototype implementation are also discussed.

Application of Self-Organizing Map for the Characteristics Analysis of Rainfall-Storage and TOC Variation in a Lake (호소수의 강우-저류량 및 TOC변동 특성분석을 위한 자기조직화 방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Jung, Woo Cheol;Park, Sung Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.611-617
    • /
    • 2008
  • It is necessary to analysis the data characteristics of discharge and water quality for efficient water resources management, aggressive alternatives to inundation by flood and various water pollution accidents, the basic information to manage water quality in lakes and to make environmental policy. Therefore, the present study applied Self-Organizing Map (SOM) showing excellent performance in classifying patterns with weights estimated by self-organization. The result revealed five patterns and TOC versus rainfall-storage data according to the respective patterns were depicted in two-dimensional plots. The visualization presented better understanding of data distribution pattern. The result in the present study might be expected to contribute to the modeling procedure for data prediction in the future.

Areal Image Clustering using Hybrid Kohonen Network (Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding (조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발)

  • Lee, Kyung-Ho;Yang, Young-Soon;Oh, June;Park, Jong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF